8.已知△ABC的三個頂點坐標分別為A(-2,3),B(-2,-1),C(6,-1),以原點為圓心的圓與此三角形有唯一的公共點,則圓的方程為( 。
A.x2+y2=1B.x2+y2=4
C.x2+y2=$\frac{16}{5}$D.x2+y2=1或x2+y2=37

分析 由題意畫出圖形,結(jié)合以原點為圓心的圓與此三角形有唯一的公共點,求出圓的半徑,則圓的方程可求.

解答 解:如圖
A(-2,3),C(6,-1),
∴過A、C的直線方程為$\frac{y+1}{3+1}=\frac{x-6}{-2-6}$,化為一般式方程,x+2y-4=0.
點O到直線x+2y-4=0的距離d=$\frac{|-4|}{\sqrt{5}}=\frac{4\sqrt{5}}{5}>1$,
又OA=$\sqrt{(-2)^{2}+{3}^{2}}=\sqrt{13}$,OB=$\sqrt{(-2)^{2}+(-1)^{2}}=\sqrt{5}$,OC=$\sqrt{{6}^{2}+(-1)^{2}}=\sqrt{37}$.
∴以原點為圓心的圓若與三角形ABC有唯一的公共點,則公共點為(0,-1)或(6,-1),
∴圓的半徑為1或$\sqrt{37}$,
則圓的方程為x2+y2=1或x2+y2=37.
故選:D.

點評 本題考查圓的標準方程,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1+x(x≥0)}\\{1-x(x<0)}\end{array}\right.$,并給出以下命題,其中正確的是(  )
A.函數(shù)y=f(sinx)是奇函數(shù),也是周期函數(shù)
B.函數(shù)y=f(sinx)是偶函數(shù),不是周期函數(shù)
C.函數(shù)y=f(sin$\frac{1}{x}$)是偶函數(shù),但不是周期函數(shù)
D.函數(shù)y=f(sin$\frac{1}{x}$)是偶函數(shù),也是周期函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知直線l:y=x-1與曲線C:y=$\frac{lnx}{x}$相切于點A,則A點坐標為(1,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.設(shè)f(x)=x2+bx+c,g(x)=bx2+cx+1,b,c∈R,且只有一個實數(shù)滿足f(x)=g(x).
(1)求b,c應滿足的條件;
(2)當b<0時,f(x)≥|g(x)|恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知全集U={1,2,3,4},集合A={1,2},B={2,3},則(∁UA)∪B=(  )
A.{2}B.{3}C.{2,3}D.{2,3,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若將函數(shù)f(x)=sin(2x+$\frac{π}{3}$)的圖象向右平移φ個單位,所得圖象關(guān)于y軸對稱,則φ的最小正值是( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{5π}{12}$D.$\frac{11π}{12}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知△ABC的三邊長分別為2,3,$\sqrt{7}$,則△ABC的面積S=$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長軸長為短軸長的$\sqrt{3}$倍.
(1)求橢圓E的離心率;
(2)設(shè)橢圓E的焦距為2$\sqrt{2}$,直線l與橢圓E交于P,Q兩點,且OP⊥OQ,求證:直線l恒與圓x2+y2=$\frac{3}{4}$相切.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在銳角三角形ABC中,角A,B,C的對邊分別為a,b,c,A=2B,求$\frac{a}$的取值范圍.

查看答案和解析>>

同步練習冊答案