分析 (1)函數(shù)f(x)=ln(x+a)-x2-x,對(duì)其進(jìn)行求導(dǎo),在x=0處取得極值,可得f′(0)=0,求得a值,從而求出函數(shù)的單調(diào)區(qū)間即可;
(2)法一:f(x)=ln(x+1)-x2-x的定義域?yàn)閧x|x>-1},利用導(dǎo)數(shù)研究其單調(diào)性,可以推出ln(x+1)-x2-x≤0,令x=$\frac{1}{n}$,利用不等式進(jìn)行放縮證明;
法二:根據(jù)數(shù)學(xué)歸納法證明;法三:根據(jù)定積分證明即可.
解答 解:(1)函數(shù)f(x)=ln(x+a)-x2-x,
f′(x)=$\frac{1}{x+a}$-2x-1,
當(dāng)x=0時(shí),f(x)取得極值,
∴f′(0)=0,解得a=1,經(jīng)檢驗(yàn)a=1符合題意,
∴f′(x)=$\frac{-x(2x+3)}{x+1}$,
當(dāng)x∈(-1,0)時(shí),f'(x)>0,于是f(x)在(-1,0)上單調(diào)遞增;
當(dāng)x∈(0,+∞)時(shí),f'(x)<0,于是f(x)在(0,+∞)上單調(diào)遞減.
(2)法一:由(1)得:f(0)是f(x)在(-1,+∞)上的最大值,
∴f(x)≤f(0),故ln(x+1)-x2-x≤0,(當(dāng)且僅當(dāng)x=0時(shí),“=”成立),
對(duì)任意正整數(shù)n,取x=$\frac{1}{n}$>0得:ln($\frac{1}{n}$+1)<$\frac{1}{n}$+$\frac{1}{{n}^{2}}$,
∴l(xiāng)n($\frac{n+1}{n}$)<$\frac{n+1}{{n}^{2}}$,
故2+$\frac{3}{4}$+$\frac{4}{9}$+…+$\frac{n+1}{{n}^{2}}$>ln2+ln$\frac{3}{2}$+ln$\frac{4}{3}$+…+ln$\frac{n+1}{n}$=ln(n+1);
(方法二)數(shù)學(xué)歸納法證明:
當(dāng)n=1時(shí),左邊=$\frac{1+1}{1^2}=2$,右邊=ln(1+1)=ln2,顯然2>ln2,不等式成立.
假設(shè)n≥k(k∈N*,k≥1)時(shí),$2+\frac{3}{4}+\frac{4}{9}+$…$+\frac{k+1}{k^2}>$ln(k+1)成立,
則n=k+1時(shí),有$2+\frac{3}{4}+\frac{4}{9}+$…$+\frac{k+1}{k^2}+\frac{k+2}{{{{(k+1)}^2}}}>\frac{k+2}{{{{(k+1)}^2}}}+ln(k+1)$;
作差比較:$ln(k+2)-ln(k+1)-\frac{k+2}{{{{(k+1)}^2}}}=ln\frac{k+2}{k+1}-\frac{k+2}{{{{(k+1)}^2}}}=ln(1+\frac{1}{k+1})-(\frac{1}{k+1}+\frac{1}{{{{(k+1)}^2}}}$,
構(gòu)建函數(shù)F(x)=ln(1+x)-x-x2(x∈(0,1)),
則$F'(x)=\frac{-x(2x+3)}{x+1}<0$,∴F(x)在(0,1),
單調(diào)遞減,∴F(x)<F(0)=0,
取$x=\frac{1}{k+1}(k≥1,k∈{N^*})$,$ln(1+\frac{1}{k+1})-(\frac{1}{k+1}+\frac{1}{{{{(k+1)}^2}}})<F(0)=0$,
即$ln(k+2)-ln(k+1)-\frac{k+2}{{{{(k+1)}^2}}}=ln\frac{k+2}{k+1}-\frac{k+2}{{{{(k+1)}^2}}}<0$,
亦即$\frac{k+2}{{{{(k+1)}^2}}}+ln(k+1)>ln(k+2)$,
故n=k+1時(shí),有$2+\frac{3}{4}+\frac{4}{9}+$…$+\frac{k+1}{k^2}+\frac{k+2}{{{{(k+1)}^2}}}>\frac{k+2}{{{{(k+1)}^2}}}+ln(k+1)>ln(k+2)$,
不等式成立,
綜上可知,對(duì)任意的正整數(shù)n,不等式$2+\frac{3}{4}+\frac{4}{9}+$…$+\frac{n+1}{n^2}>$ln(n+1)都成立;
方 法三 $2+\frac{3}{4}+\frac{4}{9}+…\frac{n+1}{n^2}>\int_1^{n+1}{\frac{x+1}{x^2}}dx$
=$\int\begin{array}{l}n+1\\ 1\end{array}(\frac{1}{x}+\frac{1}{x^2})dx=(lnx-\frac{1}{{3{x^3}}})|_1^{n+1}$
=$ln(n+1)-ln1-\frac{1}{{3{{(n+1)}^3}}}+\frac{1}{3}$
=$ln(n+1)-\frac{1}{{3{{(n+1)}^3}}}+\frac{1}{3}$
>ln(n+1).
點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)研究函數(shù)的極值及單調(diào)性,解題過(guò)程中用到了分類討論的思想,分類討論的思想也是高考的一個(gè)重要思想,要注意體會(huì)其在解題中的運(yùn)用,第三問(wèn)難度比較大,利用了前兩問(wèn)的結(jié)論進(jìn)行證明,此題是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2$\sqrt{3}$ | B. | 4$\sqrt{3}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com