(本題滿分12分)設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,過(guò)點(diǎn)垂直的直線交軸負(fù)半軸于點(diǎn),且
(1)求橢圓的離心率; (2)若過(guò)、、三點(diǎn)的圓恰好與直線相切,
求橢圓的方程;
(1);(2)

試題分析:(1)設(shè)Q(x0,0),由(c,0),A(0,b)
 

由于 即中點(diǎn).
, 
故橢圓的離心率        ……6分
(2)由⑴知于是,0) Q,
△AQF的外接圓圓心為F1(-,0),半徑r=|FQ|=
所以,解得=2,∴c =1,b=,
所求橢圓方程為    ……12分
點(diǎn)評(píng):在求橢圓的離心率時(shí),判斷出的中點(diǎn)是解題的關(guān)鍵。屬于基礎(chǔ)題型。在計(jì)算時(shí)一定要認(rèn)真、仔細(xì),避免出現(xiàn)計(jì)算錯(cuò)誤。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓(a>b>0)的焦距為4,且與橢圓有相同的離心率,斜率為k的直線l經(jīng)過(guò)點(diǎn)M(0,1),與橢圓C交于不同兩點(diǎn)A、B.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)橢圓C的右焦點(diǎn)F在以AB為直徑的圓內(nèi)時(shí),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:(a>b>0),則稱(chēng)以原點(diǎn)為圓心,r=的圓為橢圓C的“知己圓”。
(Ⅰ)若橢圓過(guò)點(diǎn)(0,1),離心率e=;求橢圓C方程及其“知己圓”的方程;
(Ⅱ)在(Ⅰ)的前提下,若過(guò)點(diǎn)(0,m)且斜率為1的直線截其“知己圓”的弦長(zhǎng)為2,求m的值;
(Ⅲ)討論橢圓C及其“知己圓”的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知是長(zhǎng)軸為的橢圓上三點(diǎn),點(diǎn)是長(zhǎng)軸的一個(gè)頂點(diǎn),過(guò)橢圓中心,且.

(1)建立適當(dāng)?shù)淖鴺?biāo)系,求橢圓方程;
(2)如果橢圓上兩點(diǎn)使直線軸圍成底邊在軸上的等腰三角形,是否總存在實(shí)數(shù)使?請(qǐng)給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓的焦點(diǎn)坐標(biāo)是(  )
A.(0,)、(0,)B. (0,-1)、(0,1)
C.(-1,0)、(1,0)D.(,0)、(,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)橢圓的右焦點(diǎn)F2作傾斜角為弦AB,則|AB︳為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓,其左準(zhǔn)線為,右準(zhǔn)線為,拋物線以坐標(biāo)原點(diǎn)為頂點(diǎn),為準(zhǔn)線,兩點(diǎn).
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)求線段的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的一個(gè)焦點(diǎn)是,且截直線所得弦長(zhǎng)為,求該橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,橢圓
(1)若一直線與橢圓交于兩不同點(diǎn),且線段恰以點(diǎn)為中點(diǎn),求直線的方程;
(2)若過(guò)點(diǎn)的直線(非軸)與橢圓相交于兩個(gè)不同點(diǎn)試問(wèn)在軸上是否存在定點(diǎn),使恒為定值?若存在,求出點(diǎn)的坐標(biāo)及實(shí)數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案