19.已知f(x)=$\frac{x}{1+x}$,求f($\frac{1}{2016}$)+f($\frac{1}{2015}$)+…+f($\frac{1}{2}$)+f(0)+f(1)+f(2)+f(3)+…+f(2016)的值.

分析 由f(x)=$\frac{x}{1+x}$,可得f(x)+f$(\frac{1}{x})$=1,又f(0)=1,f(1)=$\frac{1}{2}$,即可得出.

解答 解:∵f(x)=$\frac{x}{1+x}$,
∴f(x)+f$(\frac{1}{x})$=$\frac{x}{1+x}$+$\frac{\frac{1}{x}}{1+\frac{1}{x}}$=$\frac{x}{1+x}$+$\frac{1}{1+x}$=1,
又f(0)=0,f(1)=$\frac{1}{2}$,
∴f($\frac{1}{2016}$)+f($\frac{1}{2015}$)+…+f($\frac{1}{2}$)+f(0)+f(1)+f(2)+f(3)+…+f(2016)=1×2015+f(0)+f(1)=2015$\frac{1}{2}$.

點評 本題考查了函數(shù)求值,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知A(0,1),B(-$\sqrt{3}$,0),C(-$\sqrt{3}$,2),則△ABC內(nèi)切圓的圓心到直線y=-$\sqrt{3}$x+1的距離為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列命題中正確的( 。
A.若|$\overrightarrow{a}$|=|$\overrightarrow$|,則$\overrightarrow{a}$=$\overrightarrow$B.若$\overrightarrow{a}$=$\overrightarrow$,則$\overrightarrow{a}$∥$\overrightarrow$C.若|$\overrightarrow{a}$|>|$\overrightarrow$|,則$\overrightarrow{a}$>$\overrightarrow$D.$\overrightarrow{a}$∥$\overrightarrow$,$\overrightarrow$∥$\overrightarrow{c}$,則$\overrightarrow{a}$∥$\overrightarrow{c}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.己知集合A={x|x2+3x+2≤0},B={x|ax2+(a2-1)x-a>0},且A⊆B,實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)命題p:實數(shù)x滿足$\frac{x-a}{x-3a}$<0,其中a>0,命題q:實數(shù)x滿足$\left\{\begin{array}{l}{{x}^{2}-x-6<0}\\{{x}^{2}+2x-8>0}\end{array}\right.$.
(1)若a=1,且p∧q為真,求實數(shù)x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在矩形ABCD中,AB=2AD=2,若P為DC上的動點,則$\overrightarrow{PA}$•$\overrightarrow{PB}$-$\overrightarrow{PA}$$•\overrightarrow{BC}$的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若函數(shù)f(x)滿足f(x)+2f(1-x)=x,則f(x)的解析式為f(x)=$\frac{2}{3}$-x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.△ABC三邊長分別是3,4,5,則$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CA}$=( 。
A.$\overrightarrow{0}$B.12C.2D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.當(dāng)a為任意實數(shù)時,直線x(a+2)-y-a+1=0恒過定點C,則分別求出過點C的且滿足下列條件的直線方程
(1)與已知直線x-2y+3=0平行;
(2)與x,y軸的正半軸交于A,B兩點,且△AOB面積最。∣為坐標(biāo)原點).

查看答案和解析>>

同步練習(xí)冊答案