分析 (1)連結BD,由MN∥BD,能證明MN∥平面BCDE.
(2)以E為原點,EA為x軸,ED為y軸,EB為z軸,建立空間直角坐標系,利用向量法能求出AB與平面AEC所成的角的余弦值.
解答 證明:(1)連結BD,∵M,N分別是線段AD,AB的中點,
∴MN∥BD,
∵MN?平面BCDE,BD?平面BCDE,
∴MN∥平面BCDE.
解:(2)以E為原點,EA為x軸,ED為y軸,EB為z軸,建立空間直角坐標系,
由題意得A(2,0,0),B(0,0,2),E(0,0,0),C(0,2,1),
$\overrightarrow{AB}$=(-2,0,2),$\overrightarrow{EA}$=(2,0,0),$\overrightarrow{EC}$=(0,2,1),
設平面AEC的法向量為$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{EA}=2x=0}\\{\overrightarrow{n}•\overrightarrow{EC}=2y+z=0}\end{array}\right.$,取y=1,得$\overrightarrow{n}$=(0,1,-2),
設直線AB與平面AEC所成的角為θ,
則sinθ=$\frac{|\overrightarrow{AB}•\overrightarrow{n}|}{|\overrightarrow{AB}|•|\overrightarrow{n}|}$=$\frac{|-4|}{\sqrt{8}•\sqrt{5}}$=$\frac{\sqrt{10}}{5}$,
∴cosθ=$\sqrt{1-\frac{10}{25}}$=$\frac{\sqrt{15}}{5}$,
∴AB與平面AEC所成的角的余弦值為$\frac{\sqrt{15}}{5}$.
點評 本題考查線面平行的證明,考查線面角的余弦值的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 3$\sqrt{2}$ | C. | 18 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,1) | B. | (1,+∞) | C. | (1,2) | D. | (-∞,-1)∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | sinα=$\frac{3\sqrt{13}}{13}$ | B. | cosα=$\frac{\sqrt{13}}{2}$ | C. | cosα=$\frac{2\sqrt{13}}{13}$ | D. | tanα=$\frac{3}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com