(1)求
(2)已知,求n.

(1) 165 ;(2)27 。

解析試題分析:(1)利用組合數(shù)的性質(zhì)2,, ==……==165。
(2)即n(n-1)(n-2)=,所以,n=27.
考點(diǎn):本題主要考查排列數(shù)公式、組合數(shù)公式的應(yīng)用,組合數(shù)的性質(zhì)。
點(diǎn)評(píng):簡(jiǎn)單題,組合數(shù)性質(zhì)有:(1);(2),解題過(guò)程中要靈活選用。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6個(gè)人進(jìn)兩間屋子,①每屋都進(jìn)3人;②每屋至少進(jìn)1人,問(wèn):各有多少種分配方法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,求
(1)的值。
(2)的值。
(3)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

為了解學(xué)生身高情況,某校以10%的比例對(duì)全校700名學(xué)生按性
別進(jìn)行分層抽樣調(diào)查,測(cè)得身高情況的統(tǒng)計(jì)圖如下:

(1)估計(jì)該校男生的人數(shù);
(2)估計(jì)該校學(xué)生身高在170~185㎝之間的概率;
(3)從樣本中身高在165~180㎝之間的女生中任選2人,求至少有1人身高在170~180㎝之間的概率;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知的展開(kāi)式前兩項(xiàng)的二項(xiàng)式系數(shù)的和為10.
(1) 求的值. 
(2) 這個(gè)展開(kāi)式中是否有常數(shù)項(xiàng)?若有,將它求出,若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知的展開(kāi)式中,某一項(xiàng)的系數(shù)是它前一項(xiàng)系數(shù)的2倍,而又等于它后一項(xiàng)系數(shù)的
(Ⅰ)求展開(kāi)后所有項(xiàng)的系數(shù)之和及所有項(xiàng)的二項(xiàng)式系數(shù)之和;
(Ⅱ)求展開(kāi)式中的有理項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知二項(xiàng)式(N*)展開(kāi)式中,前三項(xiàng)的二項(xiàng)式系數(shù)和是,求:
(Ⅰ)的值;
(Ⅱ)展開(kāi)式中的常數(shù)項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知二項(xiàng)式(N*)展開(kāi)式中,前三項(xiàng)的二項(xiàng)式系數(shù)和是,求:(Ⅰ)的值;(Ⅱ)展開(kāi)式中的常數(shù)項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分13分)
(1)3人坐在有八個(gè)座位的一排上,若每人的左右兩邊都要有空位,則不同坐法的種數(shù)為幾種?
(2)有5個(gè)人并排站成一排,如果甲必須在乙的右邊,則不同的排法有多少種?
(3)現(xiàn)有10個(gè)保送上大學(xué)的名額,分配給7所學(xué)校,每校至少有1個(gè)名額,問(wèn)名額分配的方法共有多少種?

查看答案和解析>>

同步練習(xí)冊(cè)答案