11.已知正實數(shù)a,b,c且a+b+c=1,則(a+1)2+4b2+9c2的最小值為$\frac{144}{49}$.

分析 先將式a+b+c子化為1•(a+1)+$\frac{1}{2}$•(2b)+$\frac{1}{3}$•(3c)-1的形式,再運用柯西不等式求最值.

解答 解:∵a+b+c=1•(a+1)+$\frac{1}{2}$•(2b)+$\frac{1}{3}$•(3c)-1,
∴1•(a+1)+$\frac{1}{2}$•(2b)+$\frac{1}{3}$•(3c)=2,
根據(jù)柯西不等式,(x1x2+y1y2+z1z22≤(x12+y12+z12)•(x22+y22+z22)得,
[1•(a+1)+$\frac{1}{2}$•(2b)+$\frac{1}{3}$•(3c)]2≤(1+$\frac{1}{4}$+$\frac{1}{9}$)•[(a+1)2+4b2+9c2],
即,4≤$\frac{49}{36}$•[(a+1)2+4b2+9c2],
因此,(a+1)2+4b2+9c2≥$\frac{144}{49}$,
當且僅當,1:(a+1)=$\frac{1}{2}$:2b=$\frac{1}{3}$:3c時取“=”,解得a=$\frac{23}{49}$,b=$\frac{18}{49}$,c=$\frac{8}{49}$,
故(a+1)2+4b2+9c2的最小值為$\frac{144}{49}$.
故答案為:$\frac{144}{49}$.

點評 本題主要考查了柯西不等式在求最值問題中的應用,以及取等條件的確定,考查了分析處理問題的能力,整體思想與構造法的解題技巧,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

5.已知圓C1:x2+y2=1與圓C2:x2+y2-6x-8y+F=0相內切,則F=-11.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.設直線參數(shù)方程為$\left\{{\begin{array}{l}{x=2+\frac{t}{2}}\\{y=3+\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$(t為參數(shù)),則它的普通方程為$\sqrt{3}$x-y-2$\sqrt{3}$+3=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.函數(shù)f(x)=x2+2(1-a)x-2在區(qū)間[4,+∞)上單調遞增,則實數(shù)a的取值范圍是(-∞,5].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設集合M={x|x2≥x},N={x|log${\;}_{\frac{1}{2}}$(x+1)>0},則有( 。
A.M∩N=∅B.M∪N=RC.N⊆MD.M⊆∁RN
E.M⊆∁RN         

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知f(x)=x3+x-4,則函數(shù)f(x)的零點位于區(qū)間(  )內.
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.設等差數(shù)列{an}的前n項和為Sn,且Sn=$\frac{1}{2}$nan+an-c(c是常數(shù),n∈N*),a2=6.
(Ⅰ)求c的值及數(shù)列{an}的通項公式;
(Ⅱ)設bn=$\frac{{a}_{n}-2}{{2}^{n+1}}$,數(shù)列{bn}的前n項和為Tn,求使得Tn>$\frac{199}{100}$恒成立的最小的正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知等比數(shù)列{an}中,a3=2,a4a6=16,則$\frac{{{a_9}-{a_{11}}}}{{{a_5}-{a_7}}}$=( 。
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆河北滄州市高三9月聯(lián)考數(shù)學(理)試卷(解析版) 題型:選擇題

執(zhí)行如圖所示的算法,則輸出的結果是( )

A.1 B. C. D.2

查看答案和解析>>

同步練習冊答案