分析 根據(jù)題意,由三角函數(shù)的基本關(guān)系式分析可得sin(θ+$\frac{π}{3}$)的值,則cosθ=cos[(θ+$\frac{π}{3}$)-$\frac{π}{3}$],由余弦函數(shù)的差角公式分析可得cosθ=cos(θ+$\frac{π}{3}$)cos$\frac{π}{3}$+sin(θ+$\frac{π}{3}$)sin$\frac{π}{3}$,代入數(shù)據(jù)計算可得答案.
解答 解:根據(jù)題意,$θ∈[0,\frac{π}{2}]$,則θ+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{5π}{6}$],
$cos(θ+\frac{π}{3})=-\frac{11}{13}$,則sin(θ+$\frac{π}{3}$)=$\frac{4\sqrt{3}}{13}$,
則cosθ=cos[(θ+$\frac{π}{3}$)-$\frac{π}{3}$]=cos(θ+$\frac{π}{3}$)cos$\frac{π}{3}$+sin(θ+$\frac{π}{3}$)sin$\frac{π}{3}$=(-$\frac{11}{13}$)×$\frac{1}{2}$+$\frac{4\sqrt{3}}{13}$×$\frac{\sqrt{3}}{2}$=$\frac{1}{26}$;
故答案為:$\frac{1}{26}$.
點評 本題考查余弦的和角、差角公式,注意角的轉(zhuǎn)化,
科目:高中數(shù)學 來源: 題型:選擇題
A. | [2,13] | B. | [4,13] | C. | [4,$\sqrt{13}$] | D. | [2,$\sqrt{13}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限角 | B. | 第二象限角 | C. | 第三象限角 | D. | 第四象限角 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 48種 | B. | 36種 | C. | 24種 | D. | 12種 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ($\frac{1}{8}$,$\frac{1}{4}$) | B. | ($\frac{1}{4}$,$\frac{1}{2}$) | C. | ($\frac{1}{2}$,1) | D. | (1,2) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com