A. | 2 | B. | 3 | C. | 4 | D. | 9 |
分析 由x+$\frac{1}{{({x-y})y}}$=x-y+$\frac{1}{{({x-y})y}}$+y,利用基本不等式的性質(zhì)求解即可.
解答 解:∵x>y>0,
∴x+$\frac{1}{{({x-y})y}}$=x-y+$\frac{1}{{({x-y})y}}$+y≥3•$\root{3}{(x-y)•y•\frac{1}{(x-y)y}}$=3,
當(dāng)且僅當(dāng)x=2,y=1時取等號,
故x+$\frac{1}{{({x-y})y}}$的最小值是3,
故選:B.
點(diǎn)評 本題考查了基本不等式的性質(zhì),注意利用基本不等式時滿足:一正二定三相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,e) | B. | (-∞,-1]∪[e,+∞) | C. | (-∞,-1]∪[e,+∞) | D. | [e,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$sin(2x+$\frac{3π}{4}$)+$\frac{3}{2}$ | B. | $\frac{\sqrt{2}}{2}$sin(2x+$\frac{3π}{4}$) | C. | sin(2x+$\frac{π}{4}$) | D. | $\sqrt{2}$sin(2x-$\frac{π}{4}$)+$\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | -$\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com