15.已知實數(shù)x,y滿足$\left\{\begin{array}{l}x+2y-1≥0\\ x-2y+1≥0\\ x≤3\end{array}\right.$,則$\frac{y}{x+2}$的最大值為$\frac{2}{5}$.

分析 作出不等式組對應(yīng)的平面區(qū)域,利用兩點間的斜率,利用數(shù)形結(jié)合進(jìn)行求解即可.

解答 解:作出不等式組對應(yīng)的平面區(qū)域,
則$\frac{y}{x+2}$的幾何意義是區(qū)域內(nèi)的點到定點D(-2,0)的斜率,
由圖象得AD的斜率最大,
由$\left\{\begin{array}{l}{x=3}\\{x-2y+1=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$,即A(3,2),
則AD的斜率k=$\frac{y}{x+2}$=$\frac{2}{3+2}$=$\frac{2}{5}$,
故答案為:$\frac{2}{5}$;

點評 本題主要考查線性規(guī)劃的應(yīng)用,利用分式的性質(zhì),轉(zhuǎn)化為直線斜率是解決本題的關(guān)鍵.注意利用數(shù)形結(jié)合的數(shù)學(xué)思想進(jìn)行求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知全集U=R,集合A={x|-1≤x≤1},B={x|x2-2x≤0},則(∁UA)∪(∁UB)=( 。
A.{x|x<-1或x>1}B.{x|x<0或x<2}C.{x|x<0或x>1}D.{x|x<0或x>2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,椎體P-ABCD中,ABCD為邊長為1的菱形,且∠DAB=60°,PA=PD=$\sqrt{2}$,PB=2,E、F、G分別為BC、PC、AD中點.
(1)求證:平面PGB∥平面DEF;
(2)證明:AD⊥平面PGB;
(文)(3)求直線PC與平面PGB所成角的正弦值;
(理)(3)求二面角P-AD-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知a=4${∫}_{0}^{\frac{π}{2}}$cos(2x+$\frac{π}{6}$)dx,則二項式(x2+$\frac{a}{x}$)5的展開式中x4的系數(shù)為40.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知數(shù)列{an}的前n項和Sn=2n,那么數(shù)列{an}的通項公式an=$\left\{\begin{array}{l}{2,n=1}\\{{2}^{n-1},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ex(其中e是自然對數(shù)的底數(shù)),g(x)=x2+ax+1,a∈R.
(Ⅰ)記函數(shù)F(x)=f(x)•g(x),當(dāng)a>0時,求F(x)的單調(diào)區(qū)間;
(Ⅱ)若對于任意的x1,x2∈[0,2],x1≠x2,均有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=acosθ\\ y=bsinθ\end{array}\right.$(a>b>0,θ為參數(shù)).在以O(shè)為極點,x軸的正半軸為極軸的極坐標(biāo)系中,曲線C2是經(jīng)過極點的圓,且圓心C2在過極點且垂直于極軸的直線上.已知曲線C1上的點$A(3\sqrt{3},1)$對應(yīng)的參數(shù)為$θ=\frac{π}{6}$,曲線C2過點$B(2,\frac{π}{6})$.
(Ⅰ)求曲線C1及曲線C2的直角坐標(biāo)方程;
(Ⅱ)若點P在曲線上C1,求P,C2兩點間的距離|PC2|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.對于定義在R上的函數(shù)f(x)滿足兩個條件:①當(dāng)x∈[0,1]時,f(0)=0,f(1)=e,f(x)-f′(x)<0;②ex-1f(x+1)=ex+1f(x-1),e1-xf(x+1)=ex+1f(1-x),若函數(shù)y=f(x)-$\frac{x{e}^{x}}{2016}$零點的個數(shù)為(  )
A.1008B.2015C.2016D.2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在△ABC中,點D為線段BA延長線上的一點,且∠BDC=∠ACB,⊙O為△ADC的外接圓.
(1)求證:BC是⊙O的切線;
(2)若∠B=45°,∠ACB=60°,AB=3$\sqrt{2}$,求AD的長度.

查看答案和解析>>

同步練習(xí)冊答案