20.若函數(shù)f(x)=log0.8(2x2-ax+3)在區(qū)間(-1,+∞)內(nèi)為減函數(shù),則實數(shù)a的取值范圍是[-5,-4].

分析 先根據(jù)復(fù)合函數(shù)的單調(diào)性確定函數(shù)g(x)=2x2-ax+3在(-1,+∞)上是增函數(shù),再根據(jù)對數(shù)函數(shù)的真數(shù)大于0可得答案.

解答 解:設(shè)g(x)=2x2-ax+3,
若函數(shù)f(x)=log0.8(2x2-ax+3)在區(qū)間(-1,+∞)內(nèi)為減函數(shù),
則函數(shù)g(x)在(-1,+∞)上是增函數(shù),且恒為正.
則$\left\{\begin{array}{l}\frac{a}{4}≤-1\\ g(-1)=5+a≥0\end{array}\right.$
解得-5≤a≤-4.
故答案為:[-5,-4]

點評 本題主要考查復(fù)合函數(shù)的單調(diào)性,即同增異減的性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.(理科做)已知a,b,c分別是△ABC的角A,B,C的對邊,$\overrightarrow{m}$=(2a+c,b),$\overrightarrow{n}$=(cosB,cosC),且$\overrightarrow{m}$•$\overrightarrow{n}$=0.
(1)若b=$\sqrt{21}$,S△ABC=$\sqrt{3}$,求a的值;
(2)若b=$\sqrt{3}$,求△ABC外接圓半徑長及△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=1+3t}\\{y=2-4t}\end{array}}\right.$(t為參數(shù)),則直線l傾斜角的余弦值為( 。
A.-$\frac{4}{5}$B.-$\frac{3}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.判斷條件“p:A?B”是結(jié)論“q:A∪B=B”的什么條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.三棱錐P-ABC中,∠APB=∠APC=∠CPB=40°,PA=5,PB=6,PC=7,點D、E分別在棱PB、PC上運(yùn)動,則△ADE周長的最小值為5$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如果函數(shù)f(x)=lg[x(x-$\frac{3}{2}$)+1],x∈[1,$\frac{3}{2}$],那么f(x)的最大值是0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知冪函數(shù)f(x)=x${\;}^{{m}^{2}-m-3}$(其中m∈N*且m≥2)為奇函數(shù),且在(0,+∞)上是單調(diào)減函數(shù).
(1)求函數(shù)f(x);
(2)比較f(-2013)與f(-2014)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知ABCD是正方形,E是AB的中點,將△DAE和△CBE分別沿DE和CE折起,使AE與BE重合,A、B兩點重合后記為P,那么二面角P-CD-E的大小為( 。
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知圓C1的方程為x2+y2-4x+2my+2m2-2m+1=0.
(1)求當(dāng)圓的面積最大時圓C1的標(biāo)準(zhǔn)方程;
(2)求(1)中求得的圓C1關(guān)于直線l:x-y+1=0對稱的圓C2的方程.

查看答案和解析>>

同步練習(xí)冊答案