【題目】已知過點的直線與橢圓交于不同的兩點,其中,為坐標(biāo)原點

(1),求的面積;

(2)在軸上是否存在定點,使得直線的斜率互為相反數(shù)?

【答案】(1)(2)軸上存在定點,使得直線的斜率互為相反數(shù).

【解析】

(1)由題意不妨設(shè)點A(0,1),寫出直線AB方程,與橢圓方程聯(lián)立,得點B坐標(biāo),根據(jù)面積公式即可得結(jié)果;(2)設(shè)過點D的直線方程,與橢圓方程聯(lián)立,用韋達定理,即可得到定點T的坐標(biāo).

(1)當(dāng)時,,

由對稱性,不妨令,此時直線

聯(lián)立,消去整理得,

解得,,

.

所以的面積為.

(2)顯然直線的斜率不為0,設(shè)直線

聯(lián)立,消去整理得

所以,即,

,

設(shè),則

因為直線的斜率互為相反數(shù),所以,

,

,故在軸上存在定點,使得直線的斜率互為相反數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線與橢圓有一個相同的焦點,過點且與軸不垂直的直線與拋物線交于,兩點,關(guān)于軸的對稱點為.

(1)求拋物線的方程;

(2)試問直線是否過定點?若是,求出該定點的坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)討論的單調(diào)性;

(2)若函數(shù)存在兩個零點,使,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)名著《孫子算經(jīng)》中有如下問題:“今有三女,長女五日一歸,中女四日一歸,少女三日一歸.問:三女何日相會?”意思是:“一家出嫁的三個女兒中,大女兒每五天回一次娘家,二女兒每四天回一次娘家,小女兒每三天回一次娘家.三個女兒從娘家同一天走后,至少再隔多少天三人再次相會?”假如回娘家當(dāng)天均回夫家,若當(dāng)?shù)仫L(fēng)俗正月初二都要回娘家,則從正月初三算起的一百天內(nèi),有女兒回娘家的天數(shù)有(

A.58B.59C.60D.61

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表中的數(shù)據(jù)是一次階段性考試某班的數(shù)學(xué)、物理原始成績:

用這44人的兩科成績制作如下散點圖:

學(xué)號為22號的同學(xué)由于嚴(yán)重感冒導(dǎo)致物理考試發(fā)揮失常,學(xué)號為31號的同學(xué)因故未能參加物理學(xué)科的考試,為了使分析結(jié)果更客觀準(zhǔn)確,老師將兩同學(xué)的成績(對應(yīng)于圖中兩點)剔除后,用剩下的42個同學(xué)的數(shù)據(jù)作分析,計算得到下列統(tǒng)計指標(biāo):

數(shù)學(xué)學(xué)科平均分為110.5,標(biāo)準(zhǔn)差為18.36,物理學(xué)科的平均分為74,標(biāo)準(zhǔn)差為11.18,數(shù)學(xué)成績

與物理成績的相關(guān)系數(shù)為,回歸直線(如圖所示)的方程為.

(1)若不剔除兩同學(xué)的數(shù)據(jù),用全部44人的成績作回歸分析,設(shè)數(shù)學(xué)成績與物理成績的相關(guān)系數(shù)為,回歸直線為,試分析的大小關(guān)系,并在圖中畫出回歸直線的大致位置;

(2)如果同學(xué)參加了這次物理考試,估計同學(xué)的物理分?jǐn)?shù)(精確到個位);

(3)就這次考試而言,學(xué)號為16號的同學(xué)數(shù)學(xué)與物理哪個學(xué)科成績要好一些?(通常為了比較某個學(xué)生不同學(xué)科的成績水平,可按公式統(tǒng)一化成標(biāo)準(zhǔn)分再進行比較,其中為學(xué)科原始分,為學(xué)科平均分,為學(xué)科標(biāo)準(zhǔn)差)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是正方體的平面展開圖,在這個正方體中,正確的命題是( )

A. BD與CF成60°角 B. BD與EF成60°角 C. AB與CD成60°角 D. AB與EF成60°角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某次測試成績滿分是為150分,設(shè)名學(xué)生的得分分別為,名學(xué)生中得分至少為分的人數(shù).名學(xué)生的平均成績,則(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)名著《算學(xué)啟蒙》中有關(guān)于“松竹并生”的問題:松長四尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等.如圖,是源于其思想的一個程序框圖.若輸入的分別為8、2,則輸出的( )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,求函數(shù)上的值域;

2)若,函數(shù)上的最大值是,求的取值范圍;

3)若不等式上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案