曲線f(x)=·ex-f(0)x+x2在點(1,f(1))處的切線方程為____________.

 

y=ex-

【解析】因為f′(x)=·ex-f(0)+x,故有

原函數(shù)表達式可化為f(x)=ex-x+x2,從而f(1)=e-,所以所求切線方程為y-=e(x-1),

即y=ex-.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2015屆高考蘇教數(shù)學(理)訓練2 命題及其關系、充分條件與必要條件(解析版) 題型:填空題

已知條件p:x≤1,條件q: <1,則綈p是q的__________條件(填“必要不充分”“充分不必要”“充要”或“既不充分也不必要”).

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆高考蘇教數(shù)學(理)訓練16 導數(shù)與函數(shù)的綜合問題(解析版) 題型:填空題

已知y=f(x)是奇函數(shù),當x∈(0,2)時,f(x)=ln x-ax,當x∈(-2,0)時,f(x)的最小值為1,則a的值等于________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆高考蘇教數(shù)學(理)訓練14 導數(shù)與函數(shù)單調(diào)性(解析版) 題型:解答題

已知函數(shù)f(x)=|ax-2|+bln x(x>0,實數(shù)a,b為常數(shù)).

(1)若a=1,f(x)在(0,+∞)上是單調(diào)增函數(shù),求b的取值范圍;

(2)若a≥2,b=1,求方程f(x)=在(0,1]上解的個數(shù).

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆高考蘇教數(shù)學(理)訓練13 變化率與導數(shù)、導數(shù)的計算(解析版) 題型:解答題

已知函數(shù)f(x)=x2-(1+2a)x+aln x(a為常數(shù)).

(1)當a=-1時,求曲線y=f(x)在x=1處切線的方程;

(2)當a>0時,討論函數(shù)y=f(x)在區(qū)間(0,1)上的單調(diào)性,并寫出相應的單調(diào)區(qū)間.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆高考蘇教數(shù)學(理)訓練11 函數(shù)與方程(解析版) 題型:填空題

若關于x的方程x2-(a2+b2-6b)x+a2+b2+2a-4b+1=0的兩個實數(shù)根x1,x2滿足x1<0<x2<1,則a2+b2+4a+4的取值范圍是________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆高考蘇教數(shù)學(理)訓練11 函數(shù)與方程(解析版) 題型:填空題

若函數(shù)f(x)=-|x-5|+2x-1的零點所在的區(qū)間是(k,k+1),則整數(shù)k=________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆高考蘇教數(shù)學(理)訓練1 集合(解析版) 題型:填空題

已知U=R,集合A={x|x2-x-2=0},B={x|mx+1=0},B∩(∁UA)=∅,則m=________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆高考數(shù)學(理)一輪總復習專題突破六 高考概率與統(tǒng)計(解析版) 題型:解答題

假設某班級教室共有4扇窗戶,在每天上午第三節(jié)課上課預備鈴聲響起時,每扇窗戶或被敞開或被關閉,且概率均為0.5.記此時教室里敞開的窗戶個數(shù)為X.

(1)求X的分布列;

(2)若此時教室里有兩扇或兩扇以上的窗戶被關閉,班長就會將關閉的窗戶全部敞開,否則維持原狀不變.記每天上午第三節(jié)課上課時該教室里敞開的窗戶個數(shù)為Y,求Y的數(shù)學期望.

 

查看答案和解析>>

同步練習冊答案