分析 由題意可得Sn=$\frac{{a}_{n}{a}_{n+1}}{{a}_{n+1}-{a}_{n}}$,再根據(jù)遞推公式得到an2=an+1an-1,繼而得到an=$\left\{\begin{array}{l}{1,n=1}\\{{2}^{n-1},n≥2}\end{array}\right.$,再求出前n項和,再根據(jù)求和公式求出答案.
解答 解:∵(a1+a2+…+an)an=(a1+a2+…+an-1)an+1=(a1+a2+…+an-1+an-an)an+1=(a1+a2+…+an-1+an)an+1-anan+1,
∴anan+1=(a1+a2+…+an)(an+1-an),
當(dāng)n=2時,a2a3=(a1+a2)(a3-a2),
∴a3=2,
∴Sn=$\frac{{a}_{n}{a}_{n+1}}{{a}_{n+1}-{a}_{n}}$,
∴Sn-1=$\frac{{a}_{n}{a}_{n-1}}{{a}_{n}-{a}_{n-1}}$,n≥3,
∴an=Sn-Sn-1=$\frac{{a}_{n}{a}_{n+1}}{{a}_{n+1}-{a}_{n}}$-$\frac{{a}_{n}{a}_{n-1}}{{a}_{n}-{a}_{n-1}}$,
整理得an2=an+1an-1,
∴數(shù)列{an}從第3項開始為等比數(shù)列,
當(dāng)n=3時,a32=a4a2,∴a4=4,
∴q=$\frac{4}{2}$=2,
∴an=$\left\{\begin{array}{l}{1,n=1}\\{{2}^{n-1},n≥2}\end{array}\right.$
當(dāng)n≥2時,Sn=1+$\frac{1•(1-{2}^{n-1})}{1-2}$=2n-1,
∴Sn=$\left\{\begin{array}{l}{1,n=1}\\{{2}^{n-1},n≥2}\end{array}\right.$
當(dāng)n≥2時,Sn•Sn-1=2n-12n-2=22n-3,
∴S1S2+S2S3+S3S4+…+Sn-1Sn=21+23-+25+…+22n-3=$\frac{2(1-{2}^{2n-3})}{1-4}$=$\frac{{2}^{2n-1}-2}{3}$
故答案為:$\frac{{{2^{2n-1}}-2}}{3}$.
點(diǎn)評 本題考查了數(shù)列的遞推公式和等比數(shù)列的通項公式和前n項和公式,考查了分析問題解決問題的,以及運(yùn)算能力,屬于難題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com