20.如果滿足∠ABC=60°,AC=12,BC=k的△ABC有兩個(gè),那么k的取值范圍是$12<k<8\sqrt{3}$.

分析 要對三角形解得各種情況進(jìn)行討論即:無解、有1個(gè)解、有2個(gè)解,從中得出△ABC有兩個(gè)時(shí)k滿足的條件.

解答 解:(1)當(dāng)AC<BCsin∠ABC,即12<ksin60°,即k>8$\sqrt{3}$時(shí),三角形無解;
(2)當(dāng)AC=BCsin∠ABC,即12=ksin60°,即k=8$\sqrt{3}$時(shí),三角形有1解;
(3)當(dāng)BCsin∠ABC<AC<BC,即ksin60°<12<k,即12<k<8$\sqrt{3}$,三角形有2個(gè)解;
(4)當(dāng)0<BC≤AC,即0<k≤12時(shí),三角形有1個(gè)解.
綜上所述:當(dāng)$12<k<8\sqrt{3}$時(shí),三角形有兩個(gè).
故答案為:$12<k<8\sqrt{3}$.

點(diǎn)評(píng) 本題主要考查三角形解得個(gè)數(shù)問題,重在討論,易錯(cuò)點(diǎn)在于可能漏掉8$\sqrt{3}$這種情況,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,并且滿足2Sn=an2+n,an>0(n∈N*).
(Ⅰ)求a1,a2,a3;
(Ⅱ)猜想{an}的通項(xiàng)公式,并加以證明;
(Ⅲ)設(shè)bn=$\frac{1}{{{a_n}^3}}$,求證:b1+b2+…+bn<$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知x、y滿足約束條件$\left\{\begin{array}{l}x-y+2≤0\\ x≥1\\ x+y-7≤0\end{array}\right.$,則$\frac{y}{x}$的最小值為$\frac{9}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知橢圓C的中心在原點(diǎn)O,焦點(diǎn)在x軸上,離心率為$\frac{\sqrt{3}}{2}$,且橢圓C上的點(diǎn)到兩個(gè)焦點(diǎn)的距離之和為4.求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.對數(shù)列{an}前n項(xiàng)和為Sn,an>0(n=1,2,…),a1=a2=1,且對n≥2有(a1+a2+…+an)an=(a1+a2+…+an-1)an+1,則S1S2+S2S3+S3S4+…+Sn-1Sn=$\frac{{{2^{2n-1}}-2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知拋物線C:x2=2py的焦點(diǎn)F到準(zhǔn)線l的距離為2,點(diǎn)P、Q都是拋物線上的點(diǎn),且點(diǎn)Q與點(diǎn)P關(guān)于y軸對稱.
(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程和焦點(diǎn)坐標(biāo);
(Ⅱ)圓E:x2+(y-4)2=1,過點(diǎn)P作圓C的兩條切線,分別與拋物線交于M,N兩點(diǎn)(M、N不與點(diǎn)P重合),若直線MN與拋物線在點(diǎn)Q處的切線平行,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.同時(shí)拋擲2枚均勻硬幣100次,設(shè)兩枚硬幣都出現(xiàn)正面的次數(shù)為Y,則E(Y)=25,D(Y)=$\frac{75}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若離散型隨機(jī)變量的分布列為
X01
P$\frac{a}{2}$$\frac{a^2}{2}$
則X的數(shù)學(xué)期望為( 。
A.2B.2或0.5C.0.5D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.(1)已知tanα=3,求$\frac{sinα-2cosα}{sinα+cosα}$的值;
(2)已知α為第二象限角,化簡cosα$\sqrt{\frac{1-sinα}{1+sinα}}$+sinα$\sqrt{\frac{1-cosα}{1+cosα}}$.

查看答案和解析>>

同步練習(xí)冊答案