20.為得到函數(shù)f(x)=cos2x+$\sqrt{3}$sin2x,只需將函數(shù)y=2cos(2x+$\frac{π}{4}}$)( 。
A.向左平移$\frac{π}{12}$B.向右平移$\frac{7π}{12}$C.向左平移$\frac{π}{24}$D.向右平移$\frac{7π}{24}$

分析 由兩角差的余弦化簡(jiǎn)f(x)=cos2x+$\sqrt{3}$sin2x,利用三角函數(shù)圖象變換規(guī)律即可得解.

解答 解:∵y=2cos(2x+$\frac{π}{4}}$)=2cos[2(x+$\frac{π}{8}$)],
f(x)=cos2x+$\sqrt{3}$sin2x=2cos(2x-$\frac{π}{3}$)=2cos[2(x-$\frac{π}{6}$)]=2cos[2(x-$\frac{π}{6}$+$\frac{π}{8}$-$\frac{π}{8}$)]=2cos[2(x+$\frac{π}{8}$-$\frac{7π}{24}$)],
∴將函數(shù)y=2cos(2x+$\frac{π}{4}}$)=2cos[2(x+$\frac{π}{8}$)]向右平移$\frac{7π}{24}$,即可得到函數(shù)f(x)=cos2x+$\sqrt{3}$sin2x的圖象.
故選:D.

點(diǎn)評(píng) 本題考查了y=Asin(ωx+φ)型函數(shù)的圖象變換規(guī)律,考查了兩角和與差的三角函數(shù)公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如圖,以矩形ABCD的一邊AB為直徑的半圓與對(duì)邊CD相切,E為BC的中點(diǎn),P為半圓弧上任意一點(diǎn).若$\overrightarrow{AP}$=λ$\overrightarrow{AD}$+μ$\overrightarrow{AE}$,則λ-μ的最大值為(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,平面PAC⊥平面ABC,AC⊥BC,△PAC為等邊三角形,PE∥BC,過(guò)BC作平面交AP,AE分別于點(diǎn)N,M,設(shè)$\frac{AM}{AE}$=$\frac{AN}{AP}$=λ.
(1)求證:MN∥平面ABC;
(2)求λ的值,使得平面ABC與平面MNC所成的銳二面角的大小為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.給出的新定義,若函數(shù)f(x)的定義域和值域均為[m,n],則稱(chēng)[m,n]為函數(shù)f(x)的保值閉區(qū)間,已知函數(shù)f(x)=ax(a>1)存在保值閉區(qū)間,則a的取值范圍是(  )
A.(1,e)B.(1,eeC.(1,2e)D.(1,e${\;}^{\frac{1}{e}}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖所示,四邊形OABP是平行四邊形,過(guò)點(diǎn)P的直線(xiàn)與射線(xiàn)OA、OB分別相交于點(diǎn)M、N,若$\overrightarrow{OM}$=x$\overrightarrow{OA}$,$\overrightarrow{ON}$=y$\overrightarrow{OB}$.
(Ⅰ)利用$\overrightarrow{NM}$∥$\overrightarrow{MP}$,把y用x表示出來(lái)(即求y=f(x)的解析式);
(Ⅱ)設(shè)數(shù)列{an}的首項(xiàng)a1=1,an=f(an-1)(n≥2且n∈N*).
①求證:數(shù)列{${\frac{1}{a_n}}$}為等差數(shù)列;
②設(shè)bn=$\frac{1}{a_n}$,cn=$\frac{2^n}{{({2^{b_n}}+1)•({2^{{b_{n+1}}}}+1)}}$,求數(shù)列{cn}前n項(xiàng)的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知a>b,c∈R,則下列不等式一定成立的(  )
A.a|c|≥bcB.|a|c≥bcC.a|c|≥b|c|D.|a|c≥b|c|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知數(shù)列{an}中,a1=2,an+1=2an+3n+1,則數(shù)列{an}的通項(xiàng)公式an=3n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知{an}是遞增的等差數(shù)列,Sn為{an}的前n項(xiàng)和,且S5=5,a3,a4,a7成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求|a1|+|a2|+…+|a100|的值;
(Ⅲ)若集合$\{n|{(-1)^n}\frac{a_n}{2^n}>λ,n∈{N^*}\}$中有且僅有2個(gè)元素,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.過(guò)點(diǎn)A和圓心O的直線(xiàn)交⊙O于B,C兩點(diǎn)(AB<AC),AD與⊙O切于點(diǎn)D,DE⊥AC于E,AD=3$\sqrt{5}$,AB=3,則BE的長(zhǎng)度為(  )
A.1B.$\sqrt{2}$C.2D.$\sqrt{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案