【題目】把標(biāo)號為1,2,3,4的四張卡片分發(fā)給甲、乙、丙、丁四個人,每人1張,事件A表示隨機(jī)事件“甲分得1號卡片”,事件B表示隨機(jī)事件“乙分得1號卡片”.
(1)分別指什么事件?
(2)事件A與事件B是否為互斥事件?若是互斥事件,則是否互為對立事件?若不是對立事件,請分別說出事件A、事件B的對立事件.
【答案】(1)是不可能事件;表示事件甲分得1號卡片或乙分得1號卡片”(2)事件A與事件B是互斥事件,事件A與事件B不是對立事件,事件A的對立事件是指事件“甲未分得1號卡片”,事件B的對立事件是指事件“乙未分得1號卡片”
【解析】
(1)根據(jù)直接理解判斷即可.
(2)分析事件A與事件B中可能出現(xiàn)的情況分別判斷即可.
解:(1)根據(jù)題意,事件A和事件B不可能同時發(fā)生,所以是不可能事件;表示事件甲分得1號卡片或乙分得1號卡片”
(2)由(1)可知事件A和事件B不可能同時發(fā)生,所以事件A與事件B是互斥事件,又因?yàn)槭录?/span>A與事件B可以都不發(fā)生,如甲分得2號卡片,同時乙分得3號卡片,所以事件A與事件B不是對立事件,事件A的對立事件是指事件“甲未分得1號卡片”,事件B的對立事件是指事件“乙未分得1號卡片”.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的極值;
(2)若, 是方程()的兩個不同的實(shí)數(shù)根,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為比較注射兩種藥物產(chǎn)生的皮膚皰疹的面積,選200只家兔作試驗(yàn),將這200只家兔隨機(jī)地分成兩組,每組100只,其中一組注射藥物,另一組注射藥物.表1和表2所示的分別是注射藥物和藥物后皮膚皰疹面積的頻數(shù)分布(皰疹面積單位: )
表1
皰疹面積 | ||||
頻數(shù) | 30 | 40 | 20 | 10 |
表2
皰疹面積 | |||||
頻數(shù) | 10 | 25 | 20 | 30 | 15 |
(1)完成圖20-3和圖20-4所示的分別注射藥物后皮膚皰疹面積的頻率分布直方圖,并求注射藥物后皰疹面積的中位數(shù)
(2)完成下表所示的列聯(lián)表,并回答能否有99.9%的把握認(rèn)為注射藥物后的皰疹面積與注射藥物的皰疹面積有差異.(的值精確到0.01)
皰疹面積小于 | 皰疹面積不小于 | 合計 | |
注射藥物A | ______ | ______ | |
注射藥物B | ______ | ______ | |
合計 |
附:.
P() | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 2.706 | 3.811 | 5.021 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0且滿足不等式22a+1>25a﹣2.
(1)求實(shí)數(shù)a的取值范圍;
(2)求不等式loga(3x+1)<loga(7﹣5x);
(3)若函數(shù)y=loga(2x﹣1)在區(qū)間[1,3]有最小值為﹣2,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率是,過點(diǎn)作斜率為的直線交橢圓于兩點(diǎn),當(dāng)直線垂直于軸時,.
(1)求橢圓的方程
(2)當(dāng)變化時,在軸上是否存在點(diǎn),使得是以為底的等腰三角形?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的最大值和最小值,并求取得最大值和最小值時對應(yīng)的的值;
(2)設(shè)方程在區(qū)間內(nèi)有兩個相異的實(shí)數(shù)根,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】長沙某公司生產(chǎn)一種高科技晶片100片,生產(chǎn)過程中由于受到一些不可抗因素的影響,晶片會受到一定程度的磨損,因此在生產(chǎn)結(jié)束之后需要由測試人員進(jìn)行相應(yīng)的指標(biāo)測試.指標(biāo)測試情況統(tǒng)計如表所示:
若,則稱該晶片為合格品,否則該晶片為劣質(zhì)品.
(1)試求本次生產(chǎn)過程中該公司生產(chǎn)出合格品的頻率以及數(shù)量;
(2)求這批晶片測試指標(biāo)的平均值;
(3)現(xiàn)按照分層抽樣的方法在測試指標(biāo)在與之間的晶片中抽取6個晶片,再從這6個晶片中任取2個晶片進(jìn)入深入分析,求恰有1個晶片的測試指標(biāo)在之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)滿足,對任意有恒成立.
(1)求的解析式;
(2)若,對于實(shí)數(shù),記函數(shù)在區(qū)間上的最小值為,且恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com