11.已知向量$\overrightarrow a$,$\overrightarrow b$滿足$|{\overrightarrow a}|$=2,$\overrightarrow a$•$({\overrightarrow b-\overrightarrow a})$=-3,則$\overrightarrow b$在$\overrightarrow a$方向上的投影為(  )
A.$\frac{2}{3}$B.$-\frac{2}{3}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

分析 根據(jù)平面向量數(shù)量積的定義與投影的定義,進行計算即可.

解答 解:∵|$\overrightarrow{a}$|=2,$\overrightarrow{a}$•($\overrightarrow$-$\overrightarrow{a}$)=-3,
∴$\overrightarrow{a}$•$\overrightarrow$-${\overrightarrow{a}}^{2}$=$\overrightarrow{a}$•$\overrightarrow$-22=-3,
∴$\overrightarrow{a}$•$\overrightarrow$=1,
∴向量$\overrightarrow$在$\overrightarrow{a}$方向上的投影為$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|}$=$\frac{1}{2}$.
故選:C.

點評 本題考查了平面向量數(shù)量積的定義與投影的計算問題,是基礎(chǔ)題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2016-2017學年山西忻州一中高一上學期新生摸底數(shù)學試卷(解析版) 題型:解答題

如圖,是有公共頂點的等腰直角三角形,,點為射線與射線的交點.

(1)求證:;

(2)若,把繞點旋轉(zhuǎn),

①當時,求的長;

②直接寫出旋轉(zhuǎn)過程中線段長的最小值與最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知曲線C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)和曲線C2:$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{3}$=1有相同的焦點,曲線C1的離心率是曲線C2的離心率的$\sqrt{5}$倍.
(Ⅰ)求曲線C1的方程;
(Ⅱ)設(shè)點A是曲線C1的右支上一點,F(xiàn)為右焦點,連AF交曲線C1的右支于點B,作BC垂直于定直線l:x=$\frac{\sqrt{2}}{2}$,垂足為C,求證:直線AC恒過x軸上一定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知數(shù)列{an}和{bn}滿足a1=2,b1=1,2an+1=an,b1+$\frac{1}{2}$b2+$\frac{1}{3}$b3+…+$\frac{1}{n}$bn=bn+1-1(n∈N*).
(1)求an與bn
(2)記數(shù)列{anbn}的前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.從拋物線y2=4x的準線l上一點P引拋物線的兩條切線PA,PB,A,B為切點,若直線AB的傾斜角為$\frac{π}{3}$,則P點的縱坐標為( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{4\sqrt{3}}{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.設(shè)雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左焦點為F(-c,0)(c>0),P為雙曲線C右支上的一點,線段PF與圓x2+y2+$\frac{2c}{3}$x+$\frac{a^2}{9}$=0相切于點Q,且$\overrightarrow{PF}$+3$\overrightarrow{FQ}$=$\overrightarrow 0$,則雙曲線C的離心率為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知A,B,P是雙曲線mx2-ny2=1(m>0,n>0)上不同的三點,且A,B連線經(jīng)過坐標原點,若直線PA,PB的斜率積為$\frac{2}{3}$,則該雙曲線的離心率為(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{15}}}{3}$C.$\sqrt{2}$D.$\frac{{\sqrt{6}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在△ABC中,a,b,c分別是內(nèi)角A,B,C的對邊,滿足acosB+bcosA=2ccosC.
(Ⅰ)求角C的大小;
(Ⅱ)若△ABC的面積為2$\sqrt{3}$,求邊長c的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.學校為了解學生每月購買學習用品方面的支出情況,抽取了n名學生進行調(diào)查,結(jié)果顯示這些學生的支出(單位:元)都在[10,50]內(nèi),其頻率分布直方圖如圖所示,其中支出在[10,30)內(nèi)的學生有66人,則支出在[40,50]內(nèi)的學生人數(shù)是( 。
A.30B.40C.60D.120

查看答案和解析>>

同步練習冊答案