【題目】已知橢圓C1 , 拋物線C2的焦點(diǎn)均在x軸上,C1的中心和C2的頂點(diǎn)均為原點(diǎn)O,從每條曲線上各取兩個(gè)點(diǎn),其坐標(biāo)分別是(3,一2 ),(一2,0),(4,一4),( ). (Ⅰ)求C1 , C2的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在直線L滿足條件:①過(guò)C2的焦點(diǎn)F;②與C1交與不同的兩點(diǎn)M,N且滿足 ?若存在,求出直線方程;若不存在,說(shuō)明理由.
【答案】解:(Ⅰ)設(shè)拋物線C2:y2=2px(p≠0),
則有 ,x≠0,
據(jù)此驗(yàn)證4個(gè)點(diǎn)知(3,﹣2 ),(4,﹣4)在拋物線上,
∴C2:y2=4x,
設(shè)C1: ,(a>b>0),
把點(diǎn)(﹣2,0),( , )代入,得:
,解得 ,
∴ 的方程為: .
(Ⅱ)當(dāng)直線l的斜率不存在時(shí),
直線l的方程為x=1,直線l交拋物線于M(1, ),N(1,﹣ ),
≠0,不滿足題意,
當(dāng)直線l的斜率存在時(shí),假設(shè)存在直線l,過(guò)拋物線焦點(diǎn)F(1,0),
設(shè)其方程為y=k(x﹣1),與C1的交點(diǎn)坐標(biāo)為M(x1,y1),N(x2,y2),
由 ,消去y并整理,得(1+4k2)x2﹣8k2x+4(k2﹣1)=0,
∴ , ,①
y1y2=k(x1﹣1)k(x2﹣1)=k2[x1x2﹣(x1+x2)+1],
∴ =﹣ ,②
由 ,即 =0,得x1x2+y1y2=0,
將①,②代入(*)式,得 = ,
解得k=±2,
∴存在直線l滿足條件,且l的方程為2x﹣y﹣2=0或2x+y﹣2=0
【解析】(Ⅰ)設(shè)拋物線C2:y2=2px(p≠0),則有 ,≠0,由此能求出C2:y2=4x,設(shè)C1: ,(a>b>0),由題意得 ,由此能求出 的方程為: .(Ⅱ)當(dāng)直線l的斜率不存在時(shí),直線l的方程為x=1,直線l交拋物線于M(1, ),N(1,﹣ ), ≠0,不滿足題意,當(dāng)直線l的斜率存在時(shí),假設(shè)存在直線l,過(guò)拋物線焦點(diǎn)F(1,0),設(shè)其方程為y=k(x﹣1),與C1的交點(diǎn)坐標(biāo)為M(x1,y1),N(x2,y2),由 ,得(1+4k2)x2﹣8k2x+4(k2﹣1)=0,由此利用韋達(dá)定理結(jié)合已知條件能求出直線l的方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于定義域分別是A,B的函數(shù), ,規(guī)定:
現(xiàn)給定函數(shù)
(1) 若,寫出函數(shù)的解析式;
(2) 當(dāng)時(shí),求問題(1)中函數(shù)的值域;
(3) 請(qǐng)?jiān)O(shè)計(jì)一個(gè)函數(shù),使得函數(shù)為偶函數(shù)且不是常數(shù)函數(shù),并予以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù) 在某一周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:
0 | |||||
0 | 2 | 0 | 0 |
(Ⅰ)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,函數(shù)的解析式(直接寫出結(jié)果即可)
(Ⅱ)求函數(shù)的單調(diào)遞增區(qū)間;/span>
(Ⅲ)求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中學(xué)生綜合素質(zhì)評(píng)價(jià)某個(gè)維度的測(cè)評(píng)中,分“優(yōu)秀、合格、尚待改進(jìn)”三個(gè)等級(jí)進(jìn)行學(xué)生互評(píng).某校高一年級(jí)有男生500人,女生400人,為了了解性別對(duì)該維度測(cè)評(píng)結(jié)果的影響,采用分層抽樣方法從高一年級(jí)抽取了45名學(xué)生的測(cè)評(píng)結(jié)果,并作出頻數(shù)統(tǒng)計(jì)表如下: 表1:男生表2:女生
等級(jí) | 優(yōu)秀 | 合格 | 尚待改進(jìn) | 等級(jí) | 優(yōu)秀 | 合格 | 尚待改進(jìn) | |
頻數(shù) | 15 | x | 5 | 頻數(shù) | 15 | 3 | y |
(1)從表二的非優(yōu)秀學(xué)生中隨機(jī)選取2人交談,求所選2人中恰有1人測(cè)評(píng)等級(jí)為合格的概率;
(2)由表中統(tǒng)計(jì)數(shù)據(jù)填寫下邊2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“測(cè)評(píng)結(jié)果優(yōu)秀與性別有關(guān)”.
男生 | 女生 | 總計(jì) | |
優(yōu)秀 | |||
非優(yōu)秀 | |||
總計(jì) |
參考數(shù)據(jù)與公式:
K2= ,其中n=a+b+c+d.
臨界值表:
P(K2>k0) | 0.05 | 0.05 | 0.01 |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市由甲、乙兩家乒乓球俱樂部,兩家設(shè)備和服務(wù)都很好,但收費(fèi)方式不同,甲家每張球臺(tái)每小時(shí)5元;乙家按月計(jì)費(fèi),一個(gè)月中小時(shí)以內(nèi)(含小時(shí))每張球臺(tái)元,超過(guò)小時(shí)的部分每張球臺(tái)每小時(shí)元.某公司準(zhǔn)備下個(gè)月從兩家中的一家租一張球臺(tái)開展活動(dòng),活動(dòng)時(shí)間不少于小時(shí),也不超過(guò)小時(shí),設(shè)在甲家租一張球臺(tái)開展活動(dòng)小時(shí)的收費(fèi)為元,在乙家租一張球臺(tái)開展活動(dòng)小時(shí)的收費(fèi)為元.
(1)試分別寫出與的解析式;
(2)選擇哪家比較合算?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)△ABC內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且 .
(1)若 ,求△ABC的面積;
(2)若 , ,且c>b,BC邊的中點(diǎn)為D,求AD的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若二次函數(shù)f(x)=ax2+bx+c(a、b∈R)滿足f(x+1)﹣f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)若在區(qū)間[﹣1,﹣1]上,不等式f(x)>2x+m恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下面三個(gè)類比結(jié)論:
①向量 ,有| |2= 2;類比復(fù)數(shù)z,有|z|2=z2
②實(shí)數(shù)a,b有(a+b)2=a2+2ab+b2;類比向量 , ,有( )2= 2 2
③實(shí)數(shù)a,b有a2+b2=0,則a=b=0;類比復(fù)數(shù)z1 , z2 , 有z12+z22=0,則z1=z2=0
其中類比結(jié)論正確的命題個(gè)數(shù)為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com