【題目】如圖幾何體是四棱錐,為正三角形,,,,且.
(1)求證:平面平面;
(2)是棱的中點(diǎn),求證:平面;
(3)求二面角的平面角的余弦值.
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3) .
【解析】
試題分析:(1)由面面垂直的判定定理;(2)由線(xiàn)線(xiàn)平行得到線(xiàn)面平行;(3)建立空間直角坐標(biāo)系, 分別算出平面和平面的法向量, 用空間向量數(shù)量積推論算出二面角的余弦值.
試題解析:(1)證明:∵為正三角形,,,
故連接交于點(diǎn),則,
又∵,,故面,∴平面平面.
(2)證明:取的中點(diǎn),連接,則,且平面,∴平面;
而,,∴,且平面,∴平面.
綜上所述,平面平面,∴平面
(3)解:由(1)知,且,,連接,則,故;
又∵是的中點(diǎn),故,
故如圖建立空間直角坐標(biāo)系,則,,,,
,.
設(shè)平面的法向量為,則由得.
,.
同理得平面的法向量.
故二面角的平面角的余弦值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為方便市民休閑觀(guān)光,市政府計(jì)劃在半徑為200米,圓心角為的扇形廣場(chǎng)內(nèi)(如圖所示),沿邊界修建觀(guān)光道路,其中分別在線(xiàn)段上,且兩點(diǎn)間距離為定長(zhǎng)米.
(1)當(dāng)時(shí),求觀(guān)光道段的長(zhǎng)度;
(2)為提高觀(guān)光效果,應(yīng)盡量增加觀(guān)光道路總長(zhǎng)度,試確定圖中兩點(diǎn)的位置,使觀(guān)光道路總長(zhǎng)度達(dá)到最長(zhǎng)?并求出總長(zhǎng)度的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在上的函數(shù)的導(dǎo)函數(shù)為,且滿(mǎn)足,,當(dāng)時(shí)有恒成立,若非負(fù)實(shí)數(shù)、滿(mǎn)足,,則的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)y1=,y2=,其中a>0,且a≠1,試確定x為何值時(shí),有:
(1)y1=y2;(2)y1>y2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,四邊形ABCD是矩形,側(cè)面PAD⊥底面ABCD,若點(diǎn)E,F分別是PC,BD的中點(diǎn)。
(1)求證:EF∥平面PAD;
(2)求證:平面PAD⊥平面PCD
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】求適合下列條件的直線(xiàn)方程:
(1)經(jīng)過(guò)點(diǎn)P(3,2)且在兩坐標(biāo)軸上的截距相等;
(2)經(jīng)過(guò)點(diǎn)A(-1,-3),傾斜角等于直線(xiàn)y=3x的傾斜角的2倍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某海域有兩個(gè)島嶼,島在島正東4海里處,經(jīng)多年觀(guān)察研究發(fā)現(xiàn),某種魚(yú)群洄游的路線(xiàn)是曲線(xiàn),曾有漁船在距島、島距離和為8海里處發(fā)出過(guò)魚(yú)群。以所在直線(xiàn)為軸,的垂直平分線(xiàn)為軸建立平面直角坐標(biāo)系.
(1)求曲線(xiàn)的標(biāo)準(zhǔn)方程;
(2)某日,研究人員在兩島同時(shí)用聲納探測(cè)儀發(fā)出不同頻率的探測(cè)信號(hào)(傳播速度相同),兩島收到魚(yú)群在處反射信號(hào)的時(shí)間比為,問(wèn)你能否確定處的位置(即點(diǎn)的坐標(biāo))?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線(xiàn):與直線(xiàn)()交于,兩點(diǎn).
(1)當(dāng)時(shí),分別求在點(diǎn)和處的切線(xiàn)方程;
(2)軸上是否存在點(diǎn),使得當(dāng)變動(dòng)時(shí),總有?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值與最小值;
(2)若在上存在,使得成立,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com