4.已知函數(shù)f(x)=x3+ax在(1,f(1))處的切線與直線x-y=0平行,則實(shí)數(shù)a=-2.

分析 由題意可得切線的斜率與直線x-y=0的斜率相同,求出函數(shù)f(x)=x3+ax的導(dǎo)數(shù)f′(x),令導(dǎo)數(shù)中的x=1,可得切線的斜率f′(1),得出一個(gè)關(guān)于a的方程,解出a.

解答 解:函數(shù)f(x)=x3+ax的導(dǎo)數(shù)為f′(x)=3x2+a,
可得函數(shù)f(x)=x3+ax在(1,f(1))處的切線斜率為3+a,
而直線x-y=0的斜率為1,
由切線與直線x-y=0平行,可得3+a=1,
解得a=-2.
故答案為:-2.

點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,考查導(dǎo)數(shù)的幾何意義,同時(shí)考查兩直線平行的條件:斜率相等,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.△ABC中,點(diǎn)D是邊BC上的一點(diǎn),∠B=∠DAC=$\frac{π}{3}$,BD=2,AD=2$\sqrt{7}$,則CD的長為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知f(x)=-x2+4x+m的最大值為4,則不等式f(x)>x的解集為(0,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知圓C1:(x-1)2+(y+1)2=1,圓C2:(x-4)2+(y-5)2=9.點(diǎn)M、N分別是圓C1、圓C2上的動(dòng)點(diǎn),P為x軸上的動(dòng)點(diǎn),則|PN|-|PM|的最大值是(  )
A.2$\sqrt{5}$+4B.9C.7D.2$\sqrt{5}$+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.化簡($\frac{1}{4}$)${\;}^{-\frac{1}{2}}$•$\frac{(\sqrt{4a^{-1}})^{3}}{0.{1}^{-2}({a}^{3}^{-3})^{\frac{1}{2}}}$(a>0,b>0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)F1,F(xiàn)2為橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn),且|F1F2|=2c,若橢圓上存在點(diǎn)P使得|PF1|•|PF2|=2c2,則橢圓的離心率的最小值為( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列說法中正確的個(gè)數(shù)是(  )
①若直線l與平面α內(nèi)的一條直線垂直,則l⊥α;
②若直線l與平面α內(nèi)的兩條直線垂直,則l⊥α;
③若直線l與平面α內(nèi)的兩條相交直線垂直,則l⊥α;
④若直線l與平面α內(nèi)的任意一條直線垂直,則l⊥α.
A.4B.2C.3D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)函數(shù)f′(x)是偶函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(x)在區(qū)間(0,+∞)上的唯一零點(diǎn)為2,并且當(dāng)x∈(-1,1)時(shí),xf′(x)+f(x)<0.則使得f(x)<0成立的x的取值范圍是( 。
A.(-2,0)∪(0,2)B.(-∞,-2)∪(2,+∞)C.(-1,1)D.(-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.將兩個(gè)數(shù)a=2015,b=2016交換使得a=2016,b=2015下列語句正確的一組是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案