3.若函數(shù)f(x)=x2+2x+alnx在(0,1)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是(  )
A.a≥0B.a≤0C.a≥-4D.a≤-4

分析 求出f(x)的導(dǎo)數(shù),得到)=2x2+2x+a≤0在x∈(0,1)時(shí)恒成立,從而求出a的范圍即可.

解答 解:∵函數(shù)f(x)=x2+2x+alnx在(0,1)上單調(diào)遞減,
∴當(dāng)x∈(0,1)時(shí),f′(x)=2x+2+$\frac{a}{x}$=$\frac{{2x}^{2}+2x+a}{x}$≤0,
∴g(x)=2x2+2x+a≤0在x∈(0,1)時(shí)恒成立,
∴g(0)≤0,g(1)≤0,即a≤-4,
故選:D.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問(wèn)題,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x)=|ex-1|,a>0>b,f(a)=f(b),則b(ea-2)的最大值為( 。
A.$\frac{1}{e}$B.1C.2D.e

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知2cos2$\frac{A}{2}$+(cosB+$\sqrt{3}$sinB)cosC=1.
(1)求角C的大;
(2)若c=2$\sqrt{3}$,且△ABC的面積為$\sqrt{3}$,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列結(jié)論正確的個(gè)數(shù)是( 。
①命題“所有的四邊形都是矩形”是特稱命題;
②命題“?x∈R,x2+2<0”是全稱命題;
③若p:?x∈R,x2+4x+4≤0,則q:?x∈R,x2+4x+4≤0是全稱命題.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.化簡(jiǎn):
(1)$\sqrt{8{a}^{4}b}$;
(2)$\sqrt{-4{a}^{3}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若函數(shù)f(x)=x3-3ax2-bx,其中a,b為實(shí)數(shù).f(x)在區(qū)間[-1,2]上為減函數(shù),且b=9a,則a的取值范圍.[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,⊙O是△ABC的外接圓,AD平分∠BAC交BC于D,交△ABC的外接圓于E.
(1)求證:$\frac{AB}{AC}=\frac{BD}{DC}$;
(2)若AB=3,AC=2,BD=1,求AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=x2+ax+1,其中a∈R,且a≠0
(Ⅰ)設(shè)h(x)=(2x-3)f(x),若函數(shù)y=h(x)圖象與x軸恰有兩個(gè)不同的交點(diǎn),試求a的取值集合;
(Ⅱ)求函數(shù)y=|f(x)|在[0,1]上最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知不等式(x-1)m<2x-1對(duì)x∈(0,3)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案