已知曲線C:x2+y2+2kx+(4k+10)y+10k+20=0,其中k≠-1.
(1)求證:曲線C都表示圓,并且這些圓心都在同一條直線上;
(2)證明:曲線C過定點(diǎn);
(3)若曲線C與x軸相切,求k的值.
(1)圓的圓心都在直線2x-y-5=0上. (2)曲線C過定點(diǎn)(1,-3). (3) .
(1)原方程可化為(x+k)2+(y+2k+5)2=5(k+1)2.
∵k≠-1,?
∴5(k+1)2>0.?
故方程表示圓心為(-k,-2k-5),
半徑為的圓.
設(shè)圓心為(x,y),有
消去k,得2x-y-5=0.?
∴這些圓的圓心都在直線2x-y-5=0上.
(2)將原方程變形成?
k(2x+4y+10)+(x2+y2+10y+20)=0.?
上式關(guān)于參數(shù)k是恒等式,?
∴
解得
∴曲線C過定點(diǎn)(1,-3).
(3)∵圓C與x軸相切,
∴圓心到x軸的距離等于半徑,
即|-2k-5|=|k+1|.?
兩邊平方,得(2k+5)2=5(k+1)2.
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1-x2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com