6.已知函數(shù)f(x)的定義域?yàn)椋?∞,0),其導(dǎo)函數(shù)f′(x),且滿足f(x)+f′(x)<0,則不等式ex+2019f(x+2015)<f(-4)的解集為{x|-2019<x<-2015}.

分析 構(gòu)造函數(shù)g(x)=ex•f(x),求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,將不等式進(jìn)行轉(zhuǎn)化求解即可.

解答 解:構(gòu)造函數(shù)g(x)=ex•f(x),
則g′(x)=[ex•f(x)]′=ex•f′(x)+ex•f(x)=ex•[f(x)+f′(x)],
∵f(x)+f′(x)<0,
∴g′(x)<0,
即g(x)在(-∞,0)上為減函數(shù),
由不等式ex+2019f(x+2015)<f(-4),
得:ex+2015•f(x+2015)<e-4•f(-4),
即g(x+2015)<g(-4),
則-4<x+2015<0,得-2019<x<-2015.
即不等式ex+2019f(x+2015)<f(-4)的解集為:{x|-2019<x<-2015}.
故答案為:{x|-2019<x<-2015}.

點(diǎn)評(píng) 本題主要考查不等式的求解,構(gòu)造函數(shù),判斷函數(shù)的單調(diào)性,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=xex-aex-1,且f′(1)=e.
(1)求a的值及f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的方程f(x)=kx2-2(k>2)存在兩個(gè)不相等的正實(shí)數(shù)根x1,x2,證明:|x1-x2|>ln$\frac{4}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知拋物線C:y2=4x,經(jīng)過點(diǎn)(4,0)的直線l交拋物線C于A,B兩點(diǎn),M(-4,0),O為坐標(biāo)原點(diǎn).
(Ⅰ)證明:kAM+kBM=0;
(Ⅱ)若直線l的斜率為k(k<0),求$\frac{k}{{k}_{AM}•{k}_{BM}}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知點(diǎn)A(3,0),過拋物線y2=4x上一點(diǎn)P的直線與直線x=-1垂直相交于點(diǎn)B,若|PB|=|PA|,則點(diǎn)P的橫坐標(biāo)為( 。
A.1B.$\frac{3}{2}$C.2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=lnx,g(x)=ax2-(2a+1)x,a∈R
(1)當(dāng)a=1時(shí),求不等式f(x)•g(x)>0的解集;
(2)若a≠0,求函數(shù)F(x)=f(x)+g(x)的單調(diào)遞減區(qū)間;
(3)求證:當(dāng)a∈[-$\frac{3+2\sqrt{2}}{2}$,$\frac{2}{3}$]時(shí),對(duì)于任意兩個(gè)不等的實(shí)數(shù)x1,x2∈[$\frac{1}{4}$,$\frac{3}{4}$],均有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=lnx-$\frac{1}{x}$-ax,a∈R.
(Ⅰ)若函數(shù)f(x)在[1,+∞)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍;
(Ⅱ) 若f(x)有兩個(gè)不同的零點(diǎn)x1,x2,試比較x1x2與2e2的大。
(參考數(shù)據(jù),e≈2.7,取ln2≈0.7,$\sqrt{2}$≈1.4,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)=$\frac{{x}^{3}+x}{{x}^{4}+6{x}^{2}+1}$+1的最大值與最小值的乘積為(  )
A.2B.$\frac{7}{9}$C.$\frac{15}{16}$D.$\frac{17}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知空間幾何體的三視圖如圖所示,則該幾何體的表面積是8π;幾何體的體積是$\frac{10}{3}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.下面的偽代碼輸出的結(jié)果是24.

查看答案和解析>>

同步練習(xí)冊(cè)答案