【題目】選修4— 4:坐標(biāo)系與參數(shù)方程

設(shè)極坐標(biāo)系與直角坐標(biāo)系有相同的長度單位,原點(diǎn)為極點(diǎn),軸正半軸為極軸,曲線的參數(shù)方程為是參數(shù)),直線的極坐標(biāo)方程為

(Ⅰ)求曲線的普通方程和直線的參數(shù)方程;

(Ⅱ)設(shè)點(diǎn),若直線與曲線相交于兩點(diǎn),且,求的值﹒

【答案】(Ⅰ)曲線的普通方程為,直線的參數(shù)方程是參數(shù));(Ⅱ).

【解析】

(I)利用,消去,求得曲線的普通方程.先求得直線的直角坐標(biāo)方程,然后利用直線參數(shù)方程的知識,寫出直線的參數(shù)方程.(II)將直線參數(shù)方程代入切線的普通方程,寫出韋達(dá)定理,利用直線參數(shù)方程參數(shù)的幾何意義,列方程,解方程求得的值.

解:(Ⅰ)由題可得,曲線的普通方程為.

直線的直角坐標(biāo)方程為,即

由于直線過點(diǎn),傾斜角為

故直線的參數(shù)方程是參數(shù))

(直線的參數(shù)方程的結(jié)果不是唯一的.)

(Ⅱ)設(shè)兩點(diǎn)對應(yīng)的參數(shù)分別為,將直線的參數(shù)方程代入曲線的普通方程并化簡得:.

所以, 解得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2002年在北京召開的國際數(shù)學(xué)家大會的會標(biāo)是以我國古代數(shù)學(xué)家的弦圖為基礎(chǔ)設(shè)計的.弦圖是由四個全等的直角三角形與一個小正方形拼成的一個大正方形(如圖).設(shè)其中直角三角形中較小的銳角為,且,如果在弦圖內(nèi)隨機(jī)拋擲1000米黑芝麻(大小差別忽略不計),則落在小正方形內(nèi)的黑芝麻數(shù)大約為( )

A. 350B. 300C. 250D. 200

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平行四邊形中,,點(diǎn)的中點(diǎn),點(diǎn)的中點(diǎn),分別沿折起,使得平面平面(點(diǎn)在平面的同側(cè)),連接,如圖2所示.

(1)求證:;

(2)當(dāng),且平面平面時,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C 的右焦點(diǎn)為F(2,0),過點(diǎn)F的直線交橢圓于MN兩點(diǎn)且MN的中點(diǎn)坐標(biāo)為

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)直線l不經(jīng)過點(diǎn)P(0,b)且與C相交于A,B兩點(diǎn),若直線PA與直線PB的斜率的和為1,試判斷直線 l是否經(jīng)過定點(diǎn),若經(jīng)過定點(diǎn),請求出該定點(diǎn);若不經(jīng)過定點(diǎn),請給出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過拋物線Cy28x的焦點(diǎn)且斜率為k的直線與C交于A、B兩點(diǎn),若以AB為直徑的圓過點(diǎn)M(﹣2,2),則k=( 。

A.B.C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“水是生命之源”,但是據(jù)科學(xué)界統(tǒng)計可用淡水資源僅占地球儲水總量的,全世界近人口受到水荒的威脅.某市為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個合理的月用水量標(biāo)準(zhǔn)(噸):一位居民的月用水量不超過的部分按平價收費(fèi),超出的部分按議價收費(fèi).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.

(1)求直方圖中的值;

(2)設(shè)該市有60萬居民,估計全市居民中月均用水量不低于2.5噸的人數(shù),并說明理由;

(3)若該市政府希望使的居民每月的用水不按議價收費(fèi),估計的值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,,,點(diǎn)上,且,現(xiàn)將沿折起,使點(diǎn)到達(dá)點(diǎn)的位置,且與平面所成的角為,

1)求證:平面平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù))

(Ⅰ)若是定義域上的單調(diào)函數(shù),求的取值范圍;

(Ⅱ)若存在兩個極值點(diǎn),且,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長為2的菱形,,,平面平面,點(diǎn)為棱的中點(diǎn).

(Ⅰ)在棱上是否存在一點(diǎn),使得平面,并說明理由;

(Ⅱ)當(dāng)二面角的余弦值為時,求直線與平面所成的角.

查看答案和解析>>

同步練習(xí)冊答案