【題目】已知點,點為平面上動點,過點作直線的垂線,垂足為,且.

(1)求動點的軌跡方程;

(2)過點的直線與軌跡交于兩點,在處分別作軌跡的切線交于點,設(shè)直線的斜率分別為,,求證:為定值.

【答案】(1);(2)

【解析】試題分析:(1)設(shè)P(x,y),則H(﹣1,y),通過向量的數(shù)量積求出動點P的軌跡C的方程.

(2)證明:設(shè)點M(x0,y0)(x00)為軌跡C上一點,直線m:y=k0(x﹣x0)+y0為軌跡C的切線,聯(lián)立在與橢圓方程,利用判別式求出其判別式,求出,設(shè)A(x1,y1),B(x2,y2),AB:y=k(x﹣1),直線與拋物線方程,利用韋達(dá)定理求解斜率乘積即可.

試題解析:

(1)設(shè),則,有,,,,從而由題意,得動點P的軌跡C的方程y2=4x.
(2)證明:設(shè)點(x0≠0)為軌跡C上一點,直線m:y=k0(x-x0)+y0為軌跡C的切線,有,消去x得,k0y24y4k0x0+y0=0,其判別式△=16-4k0(-4k0x0+4y0)=0,解得,有m,設(shè)

根據(jù)

所以為定值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓直線.

(1)圓的圓心到直線的距離為?

(2)圓上任意一點到直線的距離小于的概率為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過拋物線的焦點,斜率為的直線交拋物線于兩點,且.

(1)求該拋物線的方程;

(2) 為坐標(biāo)原點,為拋物線上一點,若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中,過對角線的一個平面交于點,交.

①四邊形一定是平行四邊形;

②四邊形有可能是正方形;

③四邊形在底面內(nèi)的投影一定是正方形;

④四邊形有可能垂直于平面

以上結(jié)論正確的為_______________.(寫出所有正確結(jié)論的編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出以下四個命題:
①已知命題p:x∈R,tanx=2;命題q:x∈R,x2﹣x+1≥0,則命題p∧q是真命題;
②過點(﹣1,2)且在x軸和y軸上的截距相等的直線方程是x+y﹣1=0;
③函數(shù)f(x)=2x+2x﹣3在定義域內(nèi)有且只有一個零點;
④若直線xsin α+ycos α+l=0和直線 垂直,則角
其中正確命題的序號為 . (把你認(rèn)為正確的命題序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=

(1)若f(x)的值域為R,求實數(shù)a的取值范圍;

(2)若函數(shù)f(x)在(﹣∞,1)上為增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,△ABC內(nèi)接于圓O,D是 的中點,∠BAC的平分線分別交BC和圓O于點E,F(xiàn).

(1)求證:BF是△ABE外接圓的切線;
(2)若AB=3,AC=2,求DB2﹣DA2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓離心率等于,P(2,3)、Q(2,﹣3)是橢圓上的兩點.

(1)求橢圓C的方程;

(2)A,B是橢圓上位于直線PQ兩側(cè)的動點,若直線AB的斜率為,求四邊形APBQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中P﹣ABCD,AB=BC=CD=DA,∠BAD=60°,AQ=QD,△PAD是正三角形.

(1)求證:AD⊥PB;

(2)已知點M是線段PC上,MC=λPM,且PA平面MQB,求實數(shù)λ的值.

查看答案和解析>>

同步練習(xí)冊答案