若過(guò)點(diǎn)P(0,2)的直線l與拋物線y2=4x只有一個(gè)公共點(diǎn),則這樣的直線l的條數(shù)是( 。
A、1B、2C、3D、4
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:分直線l的斜率存在和不存在,當(dāng)斜率不存在和斜率存在等于0時(shí)記憶分析,當(dāng)斜率存在不等于0時(shí)聯(lián)立直線方程和拋物線方程后化為關(guān)于x的一元二次方程,由判別式等于0即可得到答案.
解答: 解:若直線l的斜率不存在,則直線l的方程為x=0,滿足條件;
當(dāng)直線l的斜率存在時(shí),不妨設(shè)l:y=kx+2,代入y2=4x,得:k2x2+(4k-4)x+4=0;
由條件知,當(dāng)k=0時(shí),即:直線y=3與拋物線有一個(gè)交點(diǎn);
當(dāng)k≠0時(shí),由△=(4k-4)2-4×4×k2=0,可得k=
1
2
時(shí)直線與拋物線有一個(gè)交點(diǎn);
故滿足條件的直線有3條.
故選:C.
點(diǎn)評(píng):本題考查了直線和圓錐曲線的關(guān)系,考查了分類討論的數(shù)學(xué)思想方法,訓(xùn)練了判別式法,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用反證法證明數(shù)學(xué)命題時(shí)首先應(yīng)該做出與命題結(jié)論相矛盾的假設(shè).否定“自然數(shù)a,b,c中恰有一個(gè)偶數(shù)”時(shí)正確的反設(shè)為(  )
A、自然數(shù)a,b,c都是奇數(shù)
B、自然數(shù)a,b,c都是偶數(shù)
C、自然數(shù)a,b,c中至少有兩個(gè)偶數(shù)
D、自然數(shù) a,b,c中至少有兩個(gè)偶數(shù)或都是奇數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式|2x+1|≥1的解集為(  )
A、[-2,0]
B、[-1,0]
C、(-∞,-1]∪[0,+∞)
D、(-∞,-2]∪[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知⊙O的半徑為r,圓心O到直線l的距離為d,則“d=r”是“直線l與⊙O相切”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若集合A={(3,6),(6,9)},則集合A中元素的個(gè)數(shù)是( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A、64+
32
3
B、64-
32
3
C、96
D、32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是二次函數(shù),且f(2-x)-f(x)=0,f(1)=-1,f(0)=0,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)在一個(gè)盒子中,放有標(biāo)號(hào)分別為1,2,3的三張卡片,現(xiàn)從這個(gè)盒子中,有放回地先后抽得兩張卡片,標(biāo)號(hào)分別記為x,y,設(shè)隨機(jī)變量ξ=|x-2|+|y-x|.
(1)寫出x,y的可能取值,并求隨機(jī)變量ξ的最大值;
(2)求事件“ξ取得最大值”的概率;
(3)求ξ的分布列和數(shù)學(xué)期望與方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠A,∠B,∠C的對(duì)邊分別為a,b,c,已知
b
sinB
=
3c
sinA
,a=3,cosB=
2
3

(1)求b的值;
(2)求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案