13.直線(2+λ)x+(λ-1)y-2λ-1=0經(jīng)過(guò)的定點(diǎn)坐標(biāo)為(1,1),經(jīng)過(guò)此定點(diǎn)且與3x-2y=0垂直的直線方程是2x+3y-5=0.

分析 由條件利用利用了m(ax+by+c)+(a′x+b′y+c′)=0 經(jīng)過(guò)直線ax+by+c=0和直線a′x+b′y+c′=0的交點(diǎn),可得結(jié)論.設(shè)直線方程為2x+3y+c=0,代入(1,1),可得c=-5,即可得出結(jié)論.

解答 解:直線(2+λ)x+(λ-1)y-2λ-1=0,即 直線(2x-y-1)+λ(x+y-2)=0,
它一定經(jīng)過(guò)2x-y-1=0 和x+y-2=0 的交點(diǎn).
由$\left\{\begin{array}{l}{2x-y-1=0}\\{x+y-2=0}\end{array}\right.$,求得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,可得直線(2+λ)x+(λ-1)y-2λ-1=0經(jīng)過(guò)的定點(diǎn)坐標(biāo)為(1,1),
設(shè)直線方程為2x+3y+c=0,代入(1,1),可得c=-5,
∴經(jīng)過(guò)此定點(diǎn)且與3x-2y=0垂直的直線方程是2x+3y-5=0
故答案為:(1,1),2x+3y-5=0.

點(diǎn)評(píng) 本題主要考查直線過(guò)定點(diǎn)問(wèn)題,考查直線方程,利用了m(ax+by+c)+(a′x+b′y+c′)=0 經(jīng)過(guò)直線ax+by+c=0和直線a′x+b′y+c′=0的交點(diǎn),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知映射$f:R→{R_+},x→{x^2}+1$.則10的原象是(  )
A.3B.-3C.3和-3D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.命題:?x>0,x(x-1)>0的否定形式為( 。
A.?x>0,x(x-1)≤0B.?x>0,x(x-1)≤0C.?x≤0,x(x-1)≤0D.?x>0,x(x-1)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.對(duì)于直線l1:A1x+B1y+C1=0和l2:A2x+B2y+C2=0,下列兩個(gè)命題中是真命題的為①.
①“A1A2+B1B2=0”是“l(fā)1⊥l2”充要條件;
②“(-$\frac{{A}_{1}}{{B}_{1}}$)•(-$\frac{{A}_{2}}{{B}_{2}}$)=-1”是“l(fā)1⊥l2”充要條件;
③“A1B2-A2B1=0”是“l(fā)1∥l2”的充要條件;
④“-$\frac{{A}_{1}}{{B}_{1}}$=-$\frac{{A}_{2}}{{B}_{2}}$”是“l(fā)1∥l2”的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)a=log23,$b=\frac{4}{3}$,c=log34,則a,b,c的大小關(guān)系為(  )
A.b<a<cB.c<a<bC.a<b<cD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.如圖,M、N分別是四面體OABC的邊OA,BC的中點(diǎn),$\overrightarrow{MP}=3\overrightarrow{PN}$,若$\overrightarrow{OP}=x\overrightarrow{OA}+y\overrightarrow{OB}+z\overrightarrow{OC}$,則x、y、z的值分別為( 。
A.$\frac{1}{6}$,$\frac{1}{3}$,$\frac{1}{3}$B.$\frac{1}{3}$,$\frac{1}{6}$,$\frac{1}{6}$C.$\frac{1}{8}$,$\frac{3}{8}$,$\frac{3}{8}$D.$\frac{3}{8}$,$\frac{1}{8}$,$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知數(shù)列{an}滿足a1=1,$\frac{{{a_n}-{a_{n+1}}}}{{{a_n}{a_{n+1}}}}=\frac{2}{n(n+1)}$(n∈N*),則an=$\frac{n}{3n-2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)y=lg (2-x)的單調(diào)遞減區(qū)間是(-∞,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.設(shè)集合A={0,1,2},B={a+2,a2+3},A∩B={1},則實(shí)數(shù)a的值為-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案