【題目】已知復(fù)數(shù)z=,(m∈R,i是虛數(shù)單位).
(1)若z是純虛數(shù),求m的值;
(2)設(shè)是z的共軛復(fù)數(shù),復(fù)數(shù)+2z在復(fù)平面上對(duì)應(yīng)的點(diǎn)在第一象限,求m的取值范圍.
【答案】(1) (2)
【解析】試題分析:(1)化簡(jiǎn)z=1-2m+(2m+1)i,若z是純虛數(shù),只需1-2m=0且2m+1≠0即可;
(2)求得1-2m-(2m+1)i,得+2z=3-6m+(2m+1)i,只需即可.
試題解析:
(1)z==
=1-2m+(2m+1)i.
因?yàn)?/span>z是純虛數(shù),所以1-2m=0且2m+1≠0,
解得m=.
(2)因?yàn)?/span>是z的共軛復(fù)數(shù),所以=1-2m-(2m+1)i.
所以+2z=1-2m-(2m+1)i+2[1-2m+(2m+1)i]
=3-6m+(2m+1)i.
因?yàn)閺?fù)數(shù)+2z在復(fù)平面上對(duì)應(yīng)的點(diǎn)在第一象限,
所以
解得-<m<,即實(shí)數(shù)m的取值范圍為(-,).
點(diǎn)睛:形如的數(shù)叫復(fù)數(shù),其中a叫做復(fù)數(shù)的實(shí)部,b叫做復(fù)數(shù)的虛部.
當(dāng)時(shí)復(fù)數(shù)為實(shí)數(shù),
當(dāng)時(shí)復(fù)數(shù)為虛數(shù),
當(dāng)時(shí)復(fù)數(shù)為純虛數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右頂點(diǎn)是雙曲線的頂點(diǎn),且橢圓的上頂點(diǎn)到雙曲線的漸近線的距離為 。
(1)求橢圓的方程;
(2)若直線與相交于兩點(diǎn),與相交于兩點(diǎn),且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某專營店經(jīng)銷某商品,當(dāng)售價(jià)不高于10元時(shí),每天能銷售100件,當(dāng)價(jià)格高于10元時(shí),每提高1元,銷量減少3件,若該專營店每日費(fèi)用支出為500元,用x表示該商品定價(jià),y表示該專營店一天的凈收入(除去每日的費(fèi)用支出后的收入).
(1)把y表示成x的函數(shù);
(2)試確定該商品定價(jià)為多少元時(shí),一天的凈收入最高?并求出凈收入的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)),且直線與曲線交于兩點(diǎn),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程;
(2) 已知點(diǎn)的極坐標(biāo)為,求的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一年級(jí)學(xué)生全部參加了體育科目的達(dá)標(biāo)測(cè)試,現(xiàn)從中隨機(jī)抽取40名學(xué)生的測(cè)試成
績(jī),整理數(shù)據(jù)并按分?jǐn)?shù)段,,,,,進(jìn)行分
組,已知測(cè)試分?jǐn)?shù)均為整數(shù),現(xiàn)用每組區(qū)間的中點(diǎn)值代替該組中的每個(gè)數(shù)據(jù),則得到體育成績(jī)的折
線圖如下:
(1)若體育成績(jī)大于或等于70分的學(xué)生為“體育良好”,已知該校高一年級(jí)有1000名學(xué)生,試估計(jì)該校高一年級(jí)學(xué)生“體育良好”的人數(shù);
(2)為分析學(xué)生平時(shí)的體育活動(dòng)情況,現(xiàn)從體育成績(jī)?cè)?/span>和的樣本學(xué)生中隨機(jī)抽取2人,求所抽取的2名學(xué)生中,至少有1人為“體育良好”的概率;
(3)假設(shè)甲、乙、丙三人的體育成績(jī)分別為,,,且,,
,當(dāng)三人的體育成績(jī)方差最小時(shí),寫出,,的值(不要求證明).
注:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)在時(shí)恒成立,求實(shí)數(shù)的取值范圍;
(3)若函數(shù),求證:函數(shù)的極大值小于1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)在區(qū)間上的值域
(2)把函數(shù)圖象所有點(diǎn)的上橫坐標(biāo)縮短為原來的倍,再把所得的圖象向左平移個(gè)單位長度,再把所得的圖象向下平移1個(gè)單位長度,得到函數(shù), 若函數(shù)關(guān)于點(diǎn)對(duì)稱
(i)求函數(shù)的解析式;
(ii)求函數(shù)單調(diào)遞增區(qū)間及對(duì)稱軸方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求曲線在點(diǎn)處的切線;
(2)若函數(shù)在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù),若在上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐,底面為菱形,,,平面,分別是的中點(diǎn)。
(1)證明:;
(2)若為上的動(dòng)點(diǎn),與平面所成最大角的正切值為,求二面角的余弦值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com