17.設(shè)點M的柱坐標(biāo)為($\sqrt{2}$,$\frac{5π}{4}$,$\sqrt{2}$),則其直角坐標(biāo)是$(-1,-1,\sqrt{2})$.

分析 設(shè)點M的直角坐標(biāo)為(x,y,z),根據(jù)變換公式為$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\\{z=z}\end{array}\right.$,得x=$\sqrt{2}×$$cos\frac{5π}{4}$,y=$\sqrt{2}×$sin$\frac{5π}{4}$,z=$\sqrt{2}$解出其坐標(biāo)值即可.

解答 解:由題意:∵M點的柱面坐標(biāo)為M($\sqrt{2}$,$\frac{5π}{4}$,$\sqrt{2}$),設(shè)點M的直角坐標(biāo)為(x,y,z),
∴x=$\sqrt{2}×$$cos\frac{5π}{4}$,y=$\sqrt{2}×$sin$\frac{5π}{4}$,z=$\sqrt{2}$
解得x=-1,y=-1,z=$\sqrt{2}$.
∴M點的直角坐標(biāo)為:M$(-1,-1,\sqrt{2})$.
故答案為$(-1,-1,\sqrt{2})$.

點評 本題考查了會將柱坐標(biāo)球坐標(biāo)與直角坐標(biāo)的互換.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}為等差數(shù)列,首項a1=5,公差d=-1,數(shù)列{bn}為等比數(shù)列,b2=1,公比為q(q>0),cn=anbn,Sn為{cn}的前n項和,記Sn=c1+c2+..+cn
(Ⅰ)求b1+b2+b3的最小值;
(Ⅱ)求S10;
(Ⅲ)求出使Sn取得最大的n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.化簡sin(α-$\frac{π}{2}$)•tan(π-α)=sinα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.觀察下列各式:a+b=1,a2+b2=3,a3+b3=5,a4+b4=7…,則a10+b10=( 。
A.15B.17C.19D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知正方形ABCD所在平面與正方形ABEF所在平面互相垂直,M為AC上一點,N為BF 上一點,且AM=FN.
(1)求證:MN∥平面CBE;
(2)求證:MN⊥AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.為了判斷高中二年級學(xué)生是否選修文科與性別的關(guān)系,現(xiàn)隨機抽取50名學(xué)生,得到如下2×2列聯(lián)表:
理科文科合計
189
815
合計
(1)請完善上表中所缺的有關(guān)數(shù)據(jù);
(2)試通過計算說明在犯錯誤的概率不超過多少的前提下,認為選修文科與性別有關(guān)系?
附:
P(K2≥k00.050.0250.0100.0050.001
k03.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,若A=$\frac{π}{6}$,a=$\sqrt{2}$,則$\frac{sinB}$=2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知△ABC,∠A=$\frac{π}{3}$,BC=2,以BC為邊作一個等邊三角形BCP,則線段AP最大長度為2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖中所示的程序框圖,輸出S的表達式為(  )
A.$\frac{1}{99}$B.$\frac{1}{1+2+3+…+99}$C.$\frac{1}{100}$D.$\frac{1}{1+2+3+…+100}$

查看答案和解析>>

同步練習(xí)冊答案