5.觀察下列各式:a+b=1,a2+b2=3,a3+b3=5,a4+b4=7…,則a10+b10=( 。
A.15B.17C.19D.21

分析 根據(jù)歸納推理尋找規(guī)律即可得到結(jié)論.

解答 解:等式的左邊為an+bn,右邊為對應(yīng)的奇數(shù),對應(yīng)為2n-1,
則當(dāng)n=10時,a10+b10=2×10-1=19,
故選:C

點評 本題主要考查歸納推理的應(yīng)用,根據(jù)條件尋找規(guī)律是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在直角坐標(biāo)系中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}$(t∈R).以直角坐標(biāo)系的原點為極點,以x軸正半軸為極軸,建立極坐標(biāo)系.曲線C1的極坐標(biāo)方程為ρ2cos2θ+3ρ2sin2θ-3=0.
(1)求出直線l的普通方程以及曲線C1的直角坐標(biāo)方程;
(2)點P是曲線C1上到直線l距離最遠(yuǎn)的點,求出這個最遠(yuǎn)距離以及點P的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}滿足:${a_1}∈{N^*}$,且${a_{n+1}}=\left\{\begin{array}{l}2{a_n},{a_n}≤p\\ 2{a_n}-6,{a_n}>p\end{array}\right.({n=1,2,…})$.記集合$M=\left\{{{a_n}\left|{n∈{N^*}}\right.}\right\}$.
(1)若p=90,a2=6,寫出數(shù)列{an}的前7項;
(2)若p=18,集合M存在一個元素是3的倍數(shù),證明:M的所有元素都是3的倍數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合M={0,1,2,3},N={x|x2-x-2≤0},P=M∩N,則集合P的子集共有( 。
A.2個B.4個C.6個D.8個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在△ABC中,角A、B、C所對的邊分別為a,b,c,且c2=a2+b2-ab,則角C=60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知A=${∫}_{0}^{3}$|x2-1|dx,則A=$\frac{22}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)點M的柱坐標(biāo)為($\sqrt{2}$,$\frac{5π}{4}$,$\sqrt{2}$),則其直角坐標(biāo)是$(-1,-1,\sqrt{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)復(fù)數(shù)z=(m2-2m-15)+(m2+4m+3)i,試求實數(shù)m的值,使:
(1)z是實數(shù);      
(2)z是純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知等差數(shù)列{an}中,a1=1,a5=-3;
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{an}的前n項和Sn=-44,求n的值.

查看答案和解析>>

同步練習(xí)冊答案