【題目】已知正多面體共有5種,即正四面體、正六面體、正八面體、正十二面體和正二十面體.任一個(gè)正多面體都有內(nèi)切球和外接球,若一個(gè)半徑為1的球既是一個(gè)正四面體的內(nèi)切球,又是一個(gè)正六面體的外接球,則這兩個(gè)多面體的頂點(diǎn)之間的最短距離為( )
A.-1B.1C.2-1D.2
【答案】D
【解析】
首先明確正四面體、正方體和球之間的關(guān)系,利用幾何體的特征,以及點(diǎn)與球面上點(diǎn)之間距離的最值條件,求得結(jié)果.
固定正四面體不動(dòng),則其內(nèi)切球也隨之固定,
考慮頂點(diǎn)與正六面體(即正方體)的頂點(diǎn)的距離,
當(dāng)正方體的頂點(diǎn)在球面上移動(dòng)時(shí),
頂點(diǎn)到球面上點(diǎn)的距離最小值就是頂點(diǎn)與正方體頂點(diǎn)距離的最小值,
即當(dāng)球心和頂點(diǎn)A以及正方體的頂點(diǎn)共線(xiàn)且A和正方體的頂點(diǎn)落在球心同側(cè)時(shí)取得最小值,
由正四面體的內(nèi)切球半徑為1,根據(jù)正四面體的特征,可知球心到頂點(diǎn)的距離為3,
所以頂點(diǎn)到球面上點(diǎn)的距離最小值為,
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱中,,,,,為的中點(diǎn).
(1)證明:平面;
(2)求直線(xiàn)與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若四位數(shù)的各位數(shù)碼中,任三個(gè)數(shù)碼皆可構(gòu)成一個(gè)三角形的三條邊長(zhǎng),則稱(chēng)n為“四位三角形數(shù)”.試求所有四位三角形數(shù)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)l的參數(shù)方程為為參數(shù)), 橢圓C的參數(shù)方程為為參數(shù))。在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)A的極坐標(biāo)為(2,
(1)求橢圓C的直角坐標(biāo)方程和點(diǎn)A在直角坐標(biāo)系下的坐標(biāo)
(2)直線(xiàn)l與橢圓C交于P,Q兩點(diǎn),求△APQ的面積
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:的左右頂點(diǎn)為A、B,右焦點(diǎn)為F,一條準(zhǔn)線(xiàn)方程是,短軸一端點(diǎn)與兩焦點(diǎn)構(gòu)成等邊三角形,點(diǎn)P、Q為橢圓C上異于A、B的兩點(diǎn),點(diǎn)R為PQ的中點(diǎn)
求橢圓C的標(biāo)準(zhǔn)方程;
直線(xiàn)PB交直線(xiàn)于點(diǎn)M,記直線(xiàn)PA的斜率為,直線(xiàn)FM的斜率為,求證:為定值;
若,求直線(xiàn)AR的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)20行若干列的0,1數(shù)陣滿(mǎn)足:各列互不相同且任意兩列中同一行都取1的行數(shù)不超過(guò)2.求當(dāng)列數(shù)最多時(shí),數(shù)陣中1的個(gè)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高三文科名學(xué)生參加了月份的高考模擬考試,學(xué)校為了了解高三文科學(xué)生的歷史、地理學(xué)習(xí)情況,從名學(xué)生中抽取名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì)分析,抽出的名學(xué)生的地理、歷史成績(jī)?nèi)缦卤恚?/span>
地理 歷史 | [80,100] | [60,80) | [40,60) |
[80,100] | 8 | m | 9 |
[60,80) | 9 | n | 9 |
[40,60) | 8 | 15 | 7 |
若歷史成績(jī)?cè)赱80,100]區(qū)間的占30%,
(1)求的值;
(2)請(qǐng)根據(jù)上面抽出的名學(xué)生地理、歷史成績(jī),填寫(xiě)下面地理、歷史成績(jī)的頻數(shù)分布表:
[80,100] | [60,80) | [40,60) | |
地理 | |||
歷史 |
根據(jù)頻數(shù)分布表中的數(shù)據(jù)估計(jì)歷史和地理的平均成績(jī)及方差(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表),并估計(jì)哪個(gè)學(xué)科成績(jī)更穩(wěn)定.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)l過(guò)點(diǎn)A(-1,0)且與⊙B:相切于點(diǎn)D,以坐標(biāo)軸為對(duì)稱(chēng)軸的雙曲線(xiàn)E過(guò)點(diǎn)D,一條漸近線(xiàn)平行于l,則E的離心率為( )
A. B. 2 C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點(diǎn).
(Ⅰ)證明: BC1//平面A1CD;
(Ⅱ)設(shè)AA1= AC=CB=2,AB=2,求三棱錐C一A1DE的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com