16.已知函數(shù)f(x)=sinx的圖象向右平移m個(gè)單位后得到函數(shù)g(x)的圖象,h(x)=cos(x+$\frac{π}{3}$),g(x)與h(x)圖象的零點(diǎn)重合,則m不可能的值為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{7π}{6}$D.-$\frac{5π}{6}$

分析 由條件利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,誘導(dǎo)公式,求得m,可得結(jié)論.

解答 解:∵函數(shù)f(x)=sinx的圖象向右平移m個(gè)單位后得到g(x)=sin(x-m)
=cos($\frac{π}{2}$-x+m)=cos(x-m-$\frac{π}{2}$)的圖象.
又h(x)=cos(x+$\frac{π}{3}$)的圖象,g(x)與h(x)圖象的零點(diǎn)重合,
故g(x)=cos(x-m-$\frac{π}{2}$)和h(x)=cos(x+$\frac{π}{3}$)的圖象相差半個(gè)周期,
∴$\frac{π}{3}$=kπ-$\frac{π}{2}$-m,即 m=kπ-$\frac{5π}{6}$,k∈Z,故m的值不會(huì)是$\frac{π}{3}$,
故選:B.

點(diǎn)評(píng) 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,誘導(dǎo)公式,判斷y=cos(x-m-$\frac{π}{2}$)和y=cos(x+$\frac{π}{3}$)的圖象相差半個(gè)周期,是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,若sin(2π+A)=$\sqrt{2}$sin(π-B),$\sqrt{3}$cosA=-$\sqrt{2}$cos(π-B),求△ABC的三個(gè)內(nèi)角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)函數(shù)f(x)=ax3-3x+1(x∈R),若對(duì)于任意x∈(0,1],都有f(x)≥0成立,則實(shí)數(shù)a取值范圍是a≥4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求下列各函數(shù)的最大值與最小值:
(I)y=2sinx-1;
(2)y=3-cosx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.利用五點(diǎn)作圖法作下列函數(shù)在[0,2π]上的圖象.
(1)y=sinx-1;
(2)y=2-cosx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.用M(A)表示非空數(shù)集A中元素的最大值,m(A)表示非空數(shù)集A中元素的最小值,定義ξ(A,B)為集合A,B的距離,且ξ(A,B)=min{|m(A)-M(B)|,|M(A)-m(B)|},若P={1,2},Q={x|(x2-mx)(x2+mx-2)=0}且ξ(P,Q)=1,則實(shí)數(shù)m的所有可能取值為( 。
A.-1,0,1,2B.0,1C.-1,0D.-1,2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知sin[(α+β)+α]=5sinβ,求證:2tan(α+β)=3tanα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y≥0\end{array}\right.$,若z=2x+y,則z的最大值等于2,z的最小值等于0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=|x+1|+|x-3|
(Ⅰ)求函數(shù)f(x)的最小值;
(Ⅱ)若{x|f(x)≤t2-3t}∩{x|-2≤x≤0}≠∅.求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案