19.已知$\left\{{\begin{array}{l}{x+y≥1}\\{x-y≥-1}\\{2x-y≤2}\end{array}}\right.$,若目標(biāo)函數(shù)z=4ax+3by(a>0,b>0)最大值為12,則$\frac{1}{a}+\frac{1}$的最小值為( 。
A.1B.2C.4D.$\frac{1}{2}$

分析 由已知利用線性規(guī)劃可得a+b=1,而$\frac{1}{a}$+$\frac{1}$=(a+b)($\frac{1}{a}$+$\frac{1}$)展開(kāi)后利用基本不等式即可求解

解答 解:不等式表示的平面區(qū)域如圖所示陰影部分,
由直線4ax+3by=z(a>0,b>0)可得y=-$\frac{4a}{3b}$x+$\frac{z}{3b}$,
則$\frac{z}{3b}$表示直線在y軸截距,截距越大z越大,
由a>0,b>0可得-$\frac{4a}{3b}$<0,
∴直線4ax+3by=Z過(guò)點(diǎn)B時(shí),目標(biāo)函數(shù)有最大值,
由 $\left\{\begin{array}{l}{2x-y=2}\\{x-y=-1}\end{array}\right.$可得B(3,4),
此時(shí)目標(biāo)函數(shù)z=4ax+3by(a>0,b>0)取得最大12,
即12a+12b=12,即a+b=1而$\frac{1}{a}$+$\frac{1}$=($\frac{1}{a}$+$\frac{1}$)(a+b)=2+$\frac{a}$+$\frac{a}$≥4,
當(dāng)且僅當(dāng)$\frac{a}$=$\frac{a}$即a=b=$\frac{1}{2}$時(shí)取等號(hào).
∴$\frac{1}{a}$+$\frac{1}$的最小值4,
故選:C.

點(diǎn)評(píng) 本題綜合地考查了線性規(guī)劃問(wèn)題和由基本不等式求函數(shù)的最值問(wèn)題.要求能準(zhǔn)確地畫(huà)出不等式表示的平面區(qū)域,并且能夠求得目標(biāo)函數(shù)的最值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知數(shù)列{an}中,an=$\frac{1}{\sqrt{n}+\sqrt{n+1}}$,{an}的前n項(xiàng)和為Sn,若Sn=10,求n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.計(jì)算:|$\frac{{{(1-i)}^{10}(3-4i)}^{4}}{{(-\sqrt{3}+i)}^{8}}$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.△ABC中,tanA,tanB是方程6x2-5x+1=0的兩根,則tanC=( 。
A.-1B.1C.$-\frac{5}{7}$D.$\frac{5}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.對(duì)某產(chǎn)品1至6月份銷(xiāo)售量及其價(jià)格進(jìn)行調(diào)查,其售價(jià)x和銷(xiāo)售量y之間的一組數(shù)據(jù)如下表所示:
月份i123456
單價(jià)xi(元)99.51010.5118
銷(xiāo)售量yi(件)111086514
(Ⅰ)根據(jù)1至5月份的數(shù)據(jù),求出y關(guān)于x的回歸直線方程;
(Ⅱ)若由回歸直線方程得到的估計(jì)數(shù)據(jù)與剩下的檢驗(yàn)數(shù)據(jù)的誤差不超過(guò)0.5元,則認(rèn)為所得到的回歸直線方程是理想的,試問(wèn)所得回歸直線方程是否理想?
(Ⅲ)預(yù)計(jì)在今后的銷(xiāo)售中,銷(xiāo)售量與單價(jià)仍然服從(Ⅰ)中的關(guān)系,且該產(chǎn)品的成本是2.5元/件,為獲得最大利潤(rùn),該產(chǎn)品的單價(jià)應(yīng)定為多少元?(利潤(rùn)=銷(xiāo)售收入-成本).
參考公式:回歸方程$\hat y=\hat bx+\hat a$,其中$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.參考數(shù)據(jù):$\sum_{i=1}^5{{x_i}{y_i}=392}$,$\sum_{i=1}^5{x_i^2}=502.5$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知集合A={x|y=lgx},B={x|x2-2x-3<0},則A∩B=( 。
A.(-1,0)B.(0,3)C.(-∞,0)∪(3,+∞)D.(-1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知各項(xiàng)不為0的等差數(shù)列{an}滿(mǎn)足${a_5}-{a_7}^2+{a_9}=0$,數(shù)列{bn}是等比數(shù)列,且b7=a7,則b2b8b11的值等于8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知圓C的方程為(x-1)2+y2=1,P是橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1上一點(diǎn),過(guò)點(diǎn)P作圖C的兩條切線,切點(diǎn)為A,B,則$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值是2$\sqrt{2}$-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某同學(xué)用“五點(diǎn)法”畫(huà)函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)在某一周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如表:
ωx+φ 0$\frac{π}{2}$  π $\frac{3π}{2}$ 2π
 x x1 $\frac{π}{3}$ x2 $\frac{7π}{3}$ x3
 y 0 $\sqrt{3}$ 0-$\sqrt{3}$ 0
(Ⅰ)根據(jù)如表求出函數(shù)f(x)的解析式;
(Ⅱ)設(shè)△ABC的三內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且f(A)=$\sqrt{3}$,a=3,S為△ABC的面積,求S+3$\sqrt{3}$cosBcosC的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案