20.已知角α的頂點(diǎn)為坐標(biāo)原點(diǎn),始邊為x軸正半軸,終邊過(guò)點(diǎn)P(-1,3),則cos2α的值為-$\frac{4}{5}$.

分析 利用任意角的三角函數(shù)的定義,求得cosα的值,再利用二倍角公式求得cos2α的值.

解答 解:∵角α的頂點(diǎn)為坐標(biāo)原點(diǎn),始邊為x軸正半軸,終邊過(guò)點(diǎn)P(-1,3),∴cosα=$\frac{-1}{\sqrt{1+9}}$=-$\frac{\sqrt{10}}{10}$
則cos2α=2cos2α-1=2×$\frac{1}{10}$-1=-$\frac{4}{5}$,
故答案為:-$\frac{4}{5}$.

點(diǎn)評(píng) 本題主要考查任意角的三角函數(shù)的定義,二倍角公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知A+B=$\frac{5}{4}$π,且A、B≠kπ+$\frac{π}{2}$(k∈Z).
(Ⅰ)求證:(1+tanA)(1+tanB)=2;
(Ⅱ)求tan$\frac{5}{8}$π的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=ax3+cx(a≠0,a∈R,c∈R),當(dāng)x=1時(shí),f(x)取得極值-2.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)區(qū)間和極大值;
(3)若對(duì)任意x1、x2∈[-1,1],不等式|f(x1)-f(x2)|≤t恒成立,求實(shí)數(shù)t的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x+2y≤1}\\{x≥0}\\{y≥0}\end{array}\right.$,則ω=$\frac{4x+2y-16}{x-3}$的取值范圍是[5,6].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知函數(shù)y=3sin(2x+$\frac{π}{4}}$),x∈[0,$\frac{π}{2}}$]的單調(diào)增區(qū)間為[0,m],則實(shí)數(shù)m的值為$\frac{π}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖所示,∠PAQ是村里一個(gè)小湖的一角,其中∠PAQ=60°.為了給村民營(yíng)造豐富的休閑環(huán)境,村委會(huì)決定在直線湖岸AP與AQ上分別建觀光長(zhǎng)廊AB與AC,其中AB是寬長(zhǎng)廊,造價(jià)是800元/米;AC是窄長(zhǎng)廊,造價(jià)是400元/米;兩段長(zhǎng)廊的總造價(jià)預(yù)算為12萬(wàn)元(恰好都用完);同時(shí),在線段BC上靠近點(diǎn)B的三等分點(diǎn)D處建一個(gè)表演舞臺(tái),并建水上通道AD(表演舞臺(tái)的大小忽略不計(jì)),水上通道的造價(jià)是600元/米.
(1)若規(guī)劃寬長(zhǎng)廊AB與窄長(zhǎng)廊AC的長(zhǎng)度相等,則水上通道AD的總造價(jià)需多少萬(wàn)元?
(2)如何設(shè)計(jì)才能使得水上通道AD的總造價(jià)最低?最低總造價(jià)是多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)f(x)=$\frac{(x+2)^{2}+(sinx+3){x}^{2}}{{x}^{2}+1}$的最大值是M,最小值是m,則M+m=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.如圖,二面角α-l-β的大小為60°,A∈β,C∈α,且AB、CD都垂直于棱l,分別交棱l于B、D.已知BD=1,AB=2,CD=3,則AC=2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,在幾何體ABCDE中,BE⊥平面ABC,CD∥BE,△ABC是等腰直角三角形,∠ABC=90°,且BE=AB=4,CD=2,點(diǎn)F在線段AC上,且AF=3FC
(1)求異面直線DF與AE所成角;
(2)求平面ABC與平面ADE所成二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案