【題目】A、B、C三位老師分別教數(shù)學、英語、體育、勞技、語文、閱讀六門課,每位教兩門.已知:
(1)體育老師和數(shù)學老師住在一起,
(2)A老師是三位老師中最年輕的,
(3)數(shù)學老師經常與C老師下象棋,
(4)英語老師比勞技老師年長,比B老師年輕,
(5)三位老師中最年長的老師比其他兩位老師家離學校遠.
問:A、B、C三位老師每人各教哪幾門課?
【答案】A是勞技和數(shù)學老師;B老師是語文和閱讀老師;C老師是英語和體育老師
【解析】
通過制表來記錄結果,依據(jù)各個條件填寫否定或肯定,依次判斷得到結果.
借助圖表來進行判斷,用“”表示否定,用“√”表示肯定,制表如下:
數(shù)學 | 英語 | 體育 | 勞技 | 語文 | 閱讀 | |
有條件可知,表格中每行有且僅有兩個肯定,每列有且僅有一個肯定
由(3)知,不是數(shù)學老師
由(4)可知,英語老師不是最年輕,也不是最年長的,又每個人教兩科,可知老師最年長且不教英語和勞技;勞技老師最年輕
合(2)可知,為勞技老師;由此可確定英語老師為
結合(1)(5)可知,最年長的老師不教體育和數(shù)學,同時確定老師還教數(shù)學
由此可得到下表:
數(shù)學 | 英語 | 體育 | 勞技 | 語文 | 閱讀 | |
√ | √ | |||||
√ | √ | |||||
√ | √ |
由此可得結果:為勞技和數(shù)學老師;為語文和閱讀老師;為英語和體育老師
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2asinωxcosωx+2 cos2ωx﹣ (a>0,ω>0)的最大值為2,且最小正周期為π. (I)求函數(shù)f(x)的解析式及其對稱軸方程;
(II)若f(α)= ,求sin(4α+ )的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了調查甲、乙兩個網站受歡迎的程度,隨機選取了14天,統(tǒng)計上午8:00~10:00各自的點擊量,得到如圖所示的莖葉圖,根據(jù)莖葉圖回答下列問題.
(1)甲、乙兩個網站點擊量的極差分別是多少?
(2)甲網站點擊量在[10,40]間的頻率是多少?
(3)甲、乙兩網站哪個更受歡迎?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】△ABC的內角A,B,C所對的邊分別為a,b,c,已知1+ = . (I)求A;
(Ⅱ)若BC邊上的中線AM=2 ,高線AH= ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】類似于十進制中的逢10進1,十二進制的進位原則是逢12進1,采用數(shù)字0,1,2,…,9和字母M,N作為計數(shù)符號,這些符號與十進制的數(shù)字對應關系如下表:
十二進制 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | M | N |
十進制 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
例如,因為563=3×122+10×12+11,所以十進制中的563在十二進制中被表示為3MN(12).那么十進制中的2008在十二進制中被表示為( )
A. 11N4(12) B. 1N25(12) C. 12N4(12) D. 1N24(12)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點是直線上的動點,定點 點為的中點,動點滿足.
(1)求點的軌跡的方程
(2)過點的直線交軌跡于兩點,為上任意一點,直線交于兩點,以為直徑的圓是否過軸上的定點? 若過定點,求出定點的坐標;若不過定點,說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合P的元素個數(shù)為個且元素為正整數(shù),將集合P分成元素個數(shù)相同且兩兩沒有公共元素的三個集合A、B、C,即 ,,,,其中 ,, 若集合A、B、C中的元素滿足 ,,,2,,則稱集合P為“完美集合”.
若集合2,,2,3,4,5,,判斷集合P和集合Q是否為“完美集合”?并說明理由;
已知集合x,3,4,5,為“完美集合”,求正整數(shù)x的值;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= sin2x+ sin2x.
(1)求函數(shù)f(x)的單調遞減區(qū)間;
(2)在△ABC中,角A,B,C的對邊分別為a,b,c,若f( )= ,△ABC的面積為3 ,求a的最小值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com