10.在${({x-\frac{1}{x}-1})^4}$的展開式中,常數(shù)項為-5.

分析 ${({x-\frac{1}{x}-1})^4}$的展開式中的通項公式:Tr+1=${∁}_{4}^{r}$(-1)4-r$(x-\frac{1}{x})^{r}$(r=0,1,2,3,4).$(x-\frac{1}{x})^{r}$的通項公式:Tk+1=${∁}_{r}^{k}$${x}^{r-k}(-\frac{1}{x})^{k}$=(-1)k${∁}_{r}^{k}$xr-2k,令r-2k=0,即r=2k.進(jìn)而得出.

解答 解:${({x-\frac{1}{x}-1})^4}$的展開式中的通項公式:Tr+1=${∁}_{4}^{r}$(-1)4-r$(x-\frac{1}{x})^{r}$(r=0,1,2,3,4).
∵$(x-\frac{1}{x})^{r}$的通項公式:Tk+1=${∁}_{r}^{k}$${x}^{r-k}(-\frac{1}{x})^{k}$=(-1)k${∁}_{r}^{k}$xr-2k,
令r-2k=0,即r=2k.
r=0,k=0;r=2,k=1;r=4,k=2.
∴常數(shù)項=1-${∁}_{2}^{1}$×${∁}_{4}^{2}$+${∁}_{4}^{2}$×1=-5.
故答案為:-5.

點(diǎn)評 本題考查了二項式定理的應(yīng)用、分類討論方法,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某幾何體的三視圖如圖所示,則該幾何體的表面積為(  )
A.6π+1B.$\frac{{({24+\sqrt{2}})π}}{4}+1$C.$\frac{{({23+\sqrt{2}})π}}{4}+\frac{1}{2}$D.$\frac{{({23+\sqrt{2}})π}}{4}+1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知B=60°,b=7,sinA-sinC=$\frac{3\sqrt{3}}{14}$.
(Ⅰ)求a;
(Ⅱ)求cos(2A-B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知曲線C的極坐標(biāo)方程ρ=2$\sqrt{2}$sin(θ+$\frac{π}{4}$).傾斜角為$\frac{π}{3}$,且經(jīng)過定點(diǎn)P(0,1)的直線l與曲線C交于M,N兩點(diǎn)
(Ⅰ)寫出直線l的參數(shù)方程的標(biāo)準(zhǔn)形式,并求曲線C的直角坐標(biāo)方程;
(Ⅱ)求$\frac{1}{|PM|}$+$\frac{1}{|PN|}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知A=[1,+∞),$B=\left\{{x∈R|\frac{1}{2}≤x≤2a-1}\right\}$,若A∩B≠∅,則實數(shù)a的取值范圍是( 。
A.[1,+∞)B.$[{\frac{1}{2},1}]$C.$[{\frac{2}{3},+∞})$D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若函數(shù)$f(x)=\frac{1}{2}cos2x+3a(sinx-cosx)+(4a-1)x$在$[-\frac{π}{2},0]$上單調(diào)遞增,則實數(shù)a的取值范圍為( 。
A.$[\frac{1}{7},1]$B.$[-1,\frac{1}{7}]$C.$(-∞,-\frac{1}{7}]∪[1,+∞)$D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知雙曲線$\frac{x^2}{4}-\frac{y^2}{2}=1$右焦點(diǎn)為F,P為雙曲線左支上一點(diǎn),點(diǎn)$A(0,\sqrt{2})$,則△APF周長的最小值為4(1+$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知拋物線y2=4x的焦點(diǎn)為F,過焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),若|AB|=6,則△AOB的面積為( 。
A.$\sqrt{6}$B.$2\sqrt{2}$C.$2\sqrt{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知$α∈({0\;,\;\;\frac{π}{2}})\;,\;\;sinα=\frac{{\sqrt{5}}}{5}$.
(1)求$sin({α+\frac{π}{4}})$的值;
(2)求tan2α的值.

查看答案和解析>>

同步練習(xí)冊答案