分析 (1)根據(jù)等差數(shù)列的性質(zhì)列方程解出首項和公差,得到通項公式和前n項和公式;
(2)利用二次函數(shù)的性質(zhì)求出Sn取得最大值時的n.
解答 解:(1)∵a1+a3=2a2,S5=$\frac{{a}_{1}+{a}_{5}}{2}×5$=5a3,
∴$\left\{\begin{array}{l}2{a_2}=22\\ 5{a_3}=45\end{array}\right.$,即$\left\{\begin{array}{l}{a_2}=11\\{a_3}=9\end{array}\right.$,∴$\left\{\begin{array}{l}{a_1}=13\\ d=-2\end{array}\right.$,
∴an=-2n+15,${S_n}=-{n^2}+14n$.
(2)Sn=-(n-7)2+49,
∴當(dāng)n=7時,Sn取得最大值,
∴k=7.
點評 本題考查了等差數(shù)列的性質(zhì),二次函數(shù)的性質(zhì),屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -7 | B. | 7 | C. | $-\frac{1}{7}$ | D. | $\frac{1}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com