13.如圖所示,在直角梯形ABEF中,將DCEF沿CD折起使∠FDA=60°,得到一個空間幾何體.
(1)求證:AF⊥平面ABCD;
(2)求三棱錐E-BCD的體積.

分析 (1)由余弦定理求出AF=$\sqrt{3}$,由勾股定理得AF⊥AD,再由DC⊥FD,DC⊥AD,得DC⊥平面ADE,從而DC⊥AF,由此能證明AF⊥平面ABCD.
(2)由題意知DF=2,CE=1,AF=$\sqrt{3}$,BC⊥DC,BC=DC=1,E到平面ABCD的距離d=$\frac{1}{2}AF$,由此能求出三棱錐E-BCD的體積.

解答 證明:(1)由于∠FDA=60°,F(xiàn)D=2,AD=1,
∴AF2=FD2+AD2-2×FD×AD×cos∠FDA=4+1-2×2×1×$\frac{1}{2}$=3,
即AF=$\sqrt{3}$,∴AF2+AD2=FD2,∴AF⊥AD.
又∵DC⊥FD,DC⊥AD,AD∩FD=D,
AD,DF?平面ADF
∴DC⊥平面ADE,AF?平面ADF,
∴DC⊥AF,
∵AD∩DC=D,AD,DC?平面ABCD.
∴AF⊥平面ABCD.
解:(2)由題意知DF=2,CE=1,AF=$\sqrt{3}$,BC⊥DC,
BC=DC=1,
∴S△BDC=$\frac{1}{2}×1×1=\frac{1}{2}$,E到平面ABCD的距離d=$\frac{1}{2}AF$=$\frac{\sqrt{3}}{2}$,
∴三棱錐E-BCD的體積V=$\frac{1}{3}×{S}_{△BCD}×d$=$\frac{1}{3}×\frac{1}{2}×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{12}$.

點(diǎn)評 本題考查線面垂直的證明,考查三棱錐的體積的求法,考查推理論證能力、運(yùn)算求解能力、空間思維能力,考查轉(zhuǎn)化化歸思想、數(shù)形結(jié)合思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=2lnx+ax-$\frac{4f′(2)}{x}$(a∈R)在x=2處的切線經(jīng)過點(diǎn)(-4,ln2)
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若不等式$\frac{2xInx}{{1-{x^2}}}$>mx-1恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若實(shí)數(shù)a,b滿足a>0,b>0,則“a>b”是“a+lna>b+lnb”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,從左到右有五個空格.
(1)向這五個格子填入0,1,2,3,4五個數(shù),要求每個數(shù)都要用到,且第三個格子不能填0,則一共有多少不同的填法?
(2)若向這五個格子放入六個不同的小球,要求每個格子里都有球,問有多少種不同的放法?
(3)若給這五個空格涂上顏色,要求相鄰格子不同色,現(xiàn)有紅黃藍(lán)三種顏色可供使用,問一共有多少不同的涂法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.我國科研人員屠呦呦發(fā)現(xiàn)從青篙中提取的青篙素抗瘧性超強(qiáng),幾乎達(dá)到100%,據(jù)監(jiān)測:服藥后每毫升血液中的含藥量y(微克)與時間t(小時)之間近似滿足如圖所示的曲線.
(1)寫出第一次服藥后y與t之間的函數(shù)關(guān)系式y(tǒng)=f(t);
(2)據(jù)進(jìn)一步測定:每毫升血液中含藥量不少于$\frac{1}{9}$微克時,治療有效,求服藥一次后治療有效的時間是多長?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知隨機(jī)變量X的分布列為$P(X=k)=\frac{a}{2^k},k=1,2,…10$,則P(2<X≤4)=(  )
A.$\frac{16}{341}$B.$\frac{32}{341}$C.$\frac{64}{341}$D.$\frac{128}{341}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知點(diǎn)F是拋物線y2=4x的焦點(diǎn),M,N是該拋物線上兩點(diǎn),|MF|+|NF|=6,則 MN中點(diǎn)的橫坐標(biāo)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若x,y滿足$\left\{\begin{array}{l}x-y+3≥0\\ 2x+y-4≤0\\ x-2y+1≤0\end{array}\right.$,則z=x-3y的最大值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,四邊形ABCD為菱形,G為AC與BD的交點(diǎn),BE⊥平面ABCD.
(1)證明:平面AEC⊥平面BED.
(2)若∠ABC=120°,AE⊥EC,AB=2,求點(diǎn)G到平面AED的距離.

查看答案和解析>>

同步練習(xí)冊答案