在區(qū)間[-1,3]是任取實(shí)數(shù)a,使得關(guān)于x的方程x2-2x+a=0有實(shí)根的概率為
 
考點(diǎn):幾何概型
專(zhuān)題:概率與統(tǒng)計(jì)
分析:根據(jù)幾何概型計(jì)算公式,首先求出方程有實(shí)根的a的范圍,然后用符合題意的基本事件對(duì)應(yīng)的區(qū)間長(zhǎng)度除以所有基本事件對(duì)應(yīng)的區(qū)間長(zhǎng)度,即可得到所求的概率.
解答: 解:∵方程x2-2x+a=0有實(shí)根,
∴4-4a≥0,
∴a≤1時(shí)方程有實(shí)根,
∵在區(qū)間[-1,3]上任取一實(shí)數(shù)a,區(qū)間長(zhǎng)度為4,[-1,1]的區(qū)間長(zhǎng)度為2,
∴所求的概率為P=
2
4
=0.5;
故答案為:0.5.
點(diǎn)評(píng):本題著重考查了幾何概型計(jì)算公式及其應(yīng)用的知識(shí),給出在區(qū)間上取數(shù)的事件,求相應(yīng)的概率值.關(guān)鍵是明確事件對(duì)應(yīng)的是區(qū)間長(zhǎng)度或者是面積或者體積.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC,∠C=45°,外接圓半徑為2,求AB邊長(zhǎng),S△ABC最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在RT△ABC中,直角邊AC=3,BC=4,點(diǎn)D是斜邊AB上的動(dòng)點(diǎn),DE⊥AC交AC于點(diǎn)E,DF⊥BC交BC于點(diǎn)F,設(shè)CE=x.
(Ⅰ)求四邊形FDEC的面積函數(shù)f(x);
(Ⅱ)當(dāng)x為何值時(shí),f(x)最大?并求出f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

春節(jié)期間,小樂(lè)對(duì)家庭中的六個(gè)成員收到的祝福短信數(shù)量進(jìn)行了統(tǒng)計(jì):
家庭成員爺爺奶奶爸爸媽媽哥哥小樂(lè)
收到短信數(shù)量x4216220140350a
(1)若
.
x
=138,求a;
(2)在六位家庭成員中任取兩位,收到的短信數(shù)均超過(guò)100的概率為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿(mǎn)足:a1=a2=1,且an+2=
a
2
n+1
+2
an
,問(wèn)是否存在常數(shù)p,q,使得對(duì)一切n∈N*都有an+2=pan+1+qan,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx+
2a
x
,a∈R.
(1)若a=1,求函數(shù)f(x)的極值;
(2)若函數(shù)f(x)在[2,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若點(diǎn)P(m,n)Q(n-1,m+1)關(guān)于直線l對(duì)稱(chēng),則l的方程是( 。
A、x-y+1=0
B、x-y=0
C、x+y+1=0
D、x+y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知三角形ABC的頂點(diǎn)坐標(biāo)為A(-1,5)、B(-2,-1)、C(4,3),M是BC邊上的中點(diǎn).
①求AB邊所在的直線方程并化為一般式;
②求中線AM的長(zhǎng).
(2)已知圓C的圓心是直線2x+y+1=0和x+3y-4=0的交點(diǎn),且與直線3x+4y+17=0相切,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和為Sn,且Sn+1=4an+2(n∈N*
(1)求證:{an+1-2an}成等比數(shù)列
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案