4.當(dāng)x∈[0,2]時(shí),函數(shù)f(x)=ax2+4(a-1)x-3在x=2時(shí)取得最大值,則實(shí)數(shù)a的取值范圍是[$\frac{2}{3}$,+∞).

分析 分a>0,a=0,a<0三種情況進(jìn)行討論,然后根據(jù)x的范圍結(jié)合圖象進(jìn)行求解.

解答 解:對稱軸為x=$\frac{2-2a}{a}$,
1)當(dāng)a>0時(shí),
要使x=2時(shí)候取得最大值,則 $\frac{2-2a}{a}$≤1,解得a≥$\frac{2}{3}$,
2)當(dāng)a=0時(shí),f(x)=-4x-3,x=0時(shí)候取得最大值,不符合題意,
3)當(dāng)a<0時(shí),要使x=2時(shí)候取得最大值,則 $\frac{2-2a}{a}$≥2,a≥$\frac{1}{2}$,與a<0相悖.
綜上所述a的取值范圍為[$\frac{2}{3}$,+∞).
故答案為:[$\frac{2}{3}$,+∞).

點(diǎn)評 本題考查二次函數(shù)的圖象和性質(zhì),解題時(shí)要注意分類討論思想的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列說法正確的是(  )
A.長度相等的向量叫相等向量
B.零向量的長度為零
C.共線向量是在一條直線上的向量
D.平行向量就是向量所在的直線平行的向量

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,AF、DE分別是⊙O、⊙O1的直徑,AD與兩圓所在的平面均垂直,AD=8,BC是⊙O的直徑,AB=AC=6,OE∥AD.
(1)證明:EF∥面BCD;
(2)證明:面ACD⊥面CEF;
(3)求三棱錐O1-OBF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的短軸長為2,離心率$\frac{\sqrt{2}}{2}$.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)T1,T2為橢圓上不同兩點(diǎn),過T1,T2作橢圓切線交于點(diǎn)P,若T1P⊥T2P,求點(diǎn)P的軌跡E的方程;
(Ⅲ)若PT1交E于Q1,PT2交E與Q2,求△PQ1Q2面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.等差數(shù)列的前n項(xiàng)和也構(gòu)成一個(gè)等差數(shù)列,即Sn,S2n-Sn,S3n-S2n,…為等差數(shù)列,公差為n2d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,已知平面α⊥β,α∩β=l,A,B是直線l上的兩點(diǎn),C、D是平面β內(nèi)的兩點(diǎn),且DA⊥l,CB⊥l,AD=3,AB=6,CB=6,P是平面α上的一動(dòng)點(diǎn),且直線PD,PC與平面α所成角相等,則二面角P-BC-D的余弦值的最小值是$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.△ABC中,若|$\overrightarrow{AB}$|2+|$\overrightarrow{AC}$|2=|$\overrightarrow{AB}$+$\overrightarrow{AC}$|2,則∠A=$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.成等差數(shù)列的三個(gè)正數(shù)的和等于6,并且這三個(gè)數(shù)分別加上3、6、13后成為等比數(shù)列{bn}中的b3、b4、b5,則數(shù)列{bn}的通項(xiàng)公式為(  )
A.bn=2n-1B.bn=3n-1C.bn=2n-2D.bn=3n-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.點(diǎn)(a+1,2a-1)在直線x-y+1=0上,則a的值為3.

查看答案和解析>>

同步練習(xí)冊答案