8.在△ABC中,A,B,C的對(duì)邊分別為a,b,c,若cosB=$\frac{1}{3}$,則tan2$\frac{A+C}{2}$+sin2$\frac{B}{2}$的值為(  )
A.$\frac{7}{3}$B.$\frac{17}{50}$C.$\frac{11}{3}$D.$\frac{5}{3}$

分析 由三角形內(nèi)角和定理化為含有角B的代數(shù)式,再由降冪公式化為余弦得答案.

解答 解:由cosB=$\frac{1}{3}$,得tan2$\frac{A+C}{2}$+sin2$\frac{B}{2}$=$ta{n}^{2}(\frac{π}{2}-\frac{B}{2})+si{n}^{2}\frac{B}{2}$
=$\frac{1}{ta{n}^{2}\frac{B}{2}}+si{n}^{2}\frac{B}{2}$=$\frac{1+cosB}{1-cosB}+\frac{1-cosB}{2}=\frac{1+\frac{1}{3}}{1-\frac{1}{3}}+\frac{1-\frac{1}{3}}{2}=\frac{7}{3}$.
故選:A.

點(diǎn)評(píng) 本題考查同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查切化弦,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知y=f(x)是開口向上的二次函數(shù),且f(1+x)=f(1-x)恒成立,若f(x+1)<f(3x-2),則x的取值范圍是( 。
A.($\frac{3}{4}$,$\frac{3}{2}$)B.(-∞,$\frac{3}{4}$)∪($\frac{3}{2}$,+∞)C.(-$\frac{3}{2}$,-$\frac{3}{4}$)D.(-∞,-$\frac{3}{2}$)∪(-$\frac{3}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在等差數(shù)列{an}中,若$\frac{{{a_{11}}}}{{{a_{10}}}}$<-1,且{an}的前n項(xiàng)和Sn有最小值,則使得Sn>0的最小的n為( 。
A.11B.19C.20D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={x|x>1},B={x|x≤1},則( 。
A.A∩B≠∅B.A∪B=RC.B⊆AD.A⊆B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.二次函數(shù)y=kx2-4x+2在區(qū)間[1,2]上是增函數(shù),則實(shí)數(shù)k的取值范圍是[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知兩個(gè)等差數(shù)列{an}和{bn}的前n項(xiàng)和分別為An和Bn,且$\frac{A_n}{B_n}$=$\frac{6n+54}{n+5}$,則使得$\frac{a_n}{b_n}$為整數(shù)的正整數(shù)n的個(gè)數(shù)是( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)a,b∈R,滿足3a-b+ab=4,則|3a+b-3|的最小值是2$\sqrt{3}$-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.△ABC中,已知AB=3,BC=5,B=$\frac{π}{3}$,這個(gè)三角形的面積等于(  )
A.$\frac{{15\sqrt{3}}}{4}$B.15C.$\frac{15}{4}$D.$\frac{9}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)滿足f(x+1)=lg(2+x)-lg(-x).
(1)求函數(shù)f(x)的解析式及定義域;
(2)解不等式f(x)<1.

查看答案和解析>>

同步練習(xí)冊答案