14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{m,x>m}\\{{x}^{2}+4x+2,x≤m}\end{array}\right.$,若函數(shù)F(x)=f(x)-x只有一個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是-2≤m<-1.

分析 令x2+4x+2=x,可得x=-2或-1,利用函數(shù)F(x)=f(x)-x只有一個(gè)零點(diǎn),即可求出實(shí)數(shù)m的取值范圍.

解答 解:由題意,令x2+4x+2=x,∴x2+3x+2=0,可得x=-2或-1,
∵函數(shù)F(x)=f(x)-x只有一個(gè)零點(diǎn),
∴實(shí)數(shù)m的取值范圍是-2≤m<-1.
故答案為:-2≤m<-1.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是分段函數(shù)的應(yīng)用,函數(shù)的零點(diǎn),難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.從集合M={1,2,3,…,9},任取相異兩元素作為a,b,可得到多少個(gè)焦點(diǎn)在x軸橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.節(jié)能環(huán)保日益受到人們的重視,水污染治理也已成為“十三五”規(guī)劃的重要議題.某地有三家工廠,分別位于矩形ABCD的兩個(gè)頂點(diǎn)A、B及CD的中點(diǎn)P處,AB=30km,BC=15km,為了處理三家工廠的污水,現(xiàn)要在該矩形區(qū)域上(含邊界),且與A、B等距離的一點(diǎn)O處,建造一個(gè)污水處理廠,并鋪設(shè)三條排污管道AO、BO、PO.設(shè)∠BAO=x(弧度),排污管道的總長(zhǎng)度為ykm.
(1)將y表示為x的函數(shù);
(2)試確定O點(diǎn)的位置,使鋪設(shè)的排污管道的總長(zhǎng)度最短,并求總長(zhǎng)度的最短公里數(shù)(精確到0.01km).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.直線a、b是異面直線,α、β是平面,若a?α,b?β,α∩β=c,則下列說(shuō)法正確的是( 。
A.c至少與a、b中的一條相交B.c至多與a、b中的一條相交
C.c與a、b都相交D.c與a、b都不相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=3x,x∈[-1,1],函數(shù)g(x)=[f(x)]2-2af(x)+3.
(Ⅰ)當(dāng)a=0時(shí),求函數(shù)g(x)的值域;
(Ⅱ)若函數(shù)g(x)的最小值為h(a),求h(a)的表達(dá)式;
(Ⅲ)是否存在實(shí)數(shù)m,n同時(shí)滿足下列兩個(gè)條件:①m>n>3;②當(dāng)h(a)的定義域?yàn)閇n,m]時(shí),值域?yàn)閇n2,m2]?若存在,求出m,n的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.直線(1-2a)x-2y+3=0與直線3x+y+2a=0垂直,則實(shí)數(shù)a的值為(  )
A.$-\frac{5}{2}$B.$\frac{1}{6}$C.$\frac{5}{6}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.給出以下結(jié)論:
①有兩個(gè)側(cè)面是矩形的棱柱是直棱柱;
②有兩個(gè)相鄰側(cè)面是矩形的棱柱是正棱柱;
③各側(cè)面都是正方形的棱柱一定是正棱柱;
④一個(gè)三棱錐四個(gè)面可以都為直角三角形;
⑤長(zhǎng)方體一條對(duì)角線與同一個(gè)頂點(diǎn)的三條棱所成的角為α,β,γ,則cos2α+cos2β+cos2γ=1.
其中正確的是④⑤(將正確結(jié)論的序號(hào)全填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列命題為真命題的是(  )
A.已知x,y∈R,則$\left\{\begin{array}{l}{x>1}\\{y>2}\end{array}\right.$是$\left\{\begin{array}{l}{x+y>3}\\{xy>2}\end{array}\right.$的充要條件
B.當(dāng)0<x≤2時(shí),函數(shù)y=x-$\frac{1}{x}$無(wú)最大值
C.?a,b∈R,$\frac{a+b}{2}≥\sqrt{ab}$
D.?x∈R,sinx+cosx=$\frac{7}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.“m>0”是“x2+x+m=0無(wú)實(shí)根”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案