【題目】如圖,在正方體中,E、F、G、H分別是的中點.
(1)證明:平面
(2)證明:平面平面.
(3)求直線AE與平面所成角的正弦值.
【答案】(1)見解析(2)見解析(3)
【解析】
(1)用線面平行的判定定理即可證明;(2)建立適當(dāng)?shù)淖鴺?biāo)系,分別找出平面和平面的一個法向量和,然后求出,即可證明平面平面;
(3)根據(jù)線面角的正弦值即為直線與平面的法向量夾角的余弦值的絕對值,即可求出結(jié)果.
(1)連接,,因為為正方體,所以四邊形為矩形,
所以,因為平面,平面,所以平面;
(2)如圖以為原點,分別以,,為軸,軸,軸的正半軸,建立空
間直角坐標(biāo)系,設(shè)正方體棱長為2,所以,,,所以
,,設(shè)平面的法向量為,所以,即,
令,則,,所以,設(shè)平面的法向量為
,又,,,所以,
,所以
即,令,所以,,所以,所以,
所以,所以平面平面;
(3)由(2)可得,平面的一個法向量為,設(shè)線AE與平面
所成角為 ,所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把邊長為a的等邊三角形鐵皮剪去三個相同的四邊形(如圖陰影部分)后,用剩余部分做成一個無蓋的正三棱柱形容器(不計接縫),設(shè)容器的高為x,容積為.
(1)寫出函數(shù)的解析式,并求出函數(shù)的定義域;
(2)求當(dāng)x為多少時,容器的容積最大?并求出最大容積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】約束條件圍成的區(qū)域面積為,且z=2x+y的最大值和最小值分別為m和n,則m﹣n=( 。
A. 5 B. 6 C. 7 D. 8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的圖象在處的切線方程;
(2)若函數(shù)在定義域上為單調(diào)增函數(shù).
①求最大整數(shù)值;
②證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對定義域為D的函數(shù),若存在距離為d的兩條平行直線和.使得當(dāng)時,恒成立,則稱函數(shù)在有一個寬度為d的通道有下列函數(shù):(1);(2);(3);(4).其中在上通道寬度為1的函數(shù)是( 。
A. (1)(3) B. (2)(3) C. (1)(3)(4) D. (2)(3)(4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合
(1)判斷8,9,10是否屬于集合;
(2)已知集合,證明:“”的充分非必要條件是“”;
(3)寫出所有滿足集合的偶數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,半徑為的水輪繞著圓心逆時針做勻速圓周運動,每分鐘轉(zhuǎn)動圈,水輪圓心距離水面,如果當(dāng)水輪上點從離開水面的時刻()開始計算時間.
(1)試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求點距離水面的高度()與時間()滿足的函數(shù)關(guān)系;
(2)求點第一次到達(dá)最高點需要的時間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】旅行社為某旅行團(tuán)包飛機(jī)去旅游,其中旅行社的包機(jī)費為元.旅行團(tuán)中的每個人的飛機(jī)票按以下方式與旅行社結(jié)算:若旅行團(tuán)的人數(shù)不超過人時,飛機(jī)票每張元;若旅行團(tuán)的人數(shù)多于人時,則予以優(yōu)惠,每多人,每個人的機(jī)票費減少元,但旅行團(tuán)的人數(shù)最多不超過人.設(shè)旅行團(tuán)的人數(shù)為人,飛機(jī)票價格元,旅行社的利潤為元.
(1)寫出每張飛機(jī)票價格元與旅行團(tuán)人數(shù)之間的函數(shù)關(guān)系式;
(2)當(dāng)旅行團(tuán)人數(shù)為多少時,旅行社可獲得最大利潤?求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,試判斷函數(shù)的零點個數(shù),并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com