分析 (1)根據(jù)導函數(shù)的解析式設出原函數(shù)的解析式,根據(jù)有兩個相等的實根可得f(x)=x2+2x+1,根據(jù)定積分的定義可得答案.
(2)利用定積分求面積,即可求t的值.
解答 解:(1)設f(x)=ax2+bx+c,則f′(x)=2ax+b,
又已知f′(x)=2x+2
∴a=1,b=2.
∴f(x)=x2+2x+c
又方程f(x)=0有兩個相等實根,
∴判別式△=4-4c=0,即c=1.
故f(x)=x2+2x+1.
依題意,所求面積=${∫}_{-1}^{0}$(x2+2x+1)dx=($\frac{1}{3}$x3+x2+x)${|}_{-1}^{0}$=$\frac{1}{3}$
故y=f(x)的圖象與兩坐標軸所圍成封閉圖形的面積為$\frac{1}{3}$.
(2)${∫}_{-t}^{0}$(x2+2x+1)dx=${∫}_{-1}^{-t}$(x2+2x+1)dx,
∴($\frac{1}{3}$x3+x2+x)${|}_{-t}^{0}$=($\frac{1}{3}$x3+x2+x)${|}_{-1}^{-t}$
∴2($\frac{1}{3}$t3-t2+t)=$\frac{1}{3}$,
∴(t-1)3=-$\frac{1}{2}$
∴t=1-$\root{3}{\frac{1}{2}}$.
點評 本題主要考查導數(shù)的逆運算和定積分在求面積中的應用.屬中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com