8.函數(shù)f(x)=ax3+bx+1在x=1處有極大值2,則b-a=4.

分析 由已知得f′(x)=3ax2+b,且$\left\{\begin{array}{l}f′(1)=3a+b=0\\ f(1)=a+b=2\end{array}\right.$,求出a,b,即可得到結(jié)果.

解答 解:∵函數(shù)f(x)=ax3+bx+1,
∴f′(x)=3ax2+b,
∵f(x)=ax3+bx+1在x=1處有極大值2,
∴$\left\{\begin{array}{l}f′(1)=3a+b=0\\ f(1)=a+b=2\end{array}\right.$,解得a=-1,b=3,
解得b-a=4.
故答案為:4.

點(diǎn)評(píng) 本題重點(diǎn)考查利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),利用函數(shù)的性質(zhì)解決不等式、方程問題.重點(diǎn)考查學(xué)生的代數(shù)推理論證能力,解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知四個(gè)數(shù)3,5,x,7的平均數(shù)為6,則這組數(shù)據(jù)的標(biāo)準(zhǔn)差為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)α、β都是銳角,$cosα=\frac{1}{7},cos(α+β)=\frac{{5\sqrt{3}}}{14}$,請(qǐng)問cosβ是否可以求解,若能求解,求出答案,若不能求解簡(jiǎn)述理由不滿足余弦函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,點(diǎn)A、B分別是角α、β的終邊與單位圓的交點(diǎn),$0<β<\frac{π}{2}<α<π$.
(1)若$α=\frac{3}{4}π$,$cos({α-β})=\frac{2}{3}$,求sin2β的值;
(2)證明:cos(α-β)=cosαcosβ+sinαsinβ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{3}=1$($a>\sqrt{3}$)上一動(dòng)點(diǎn) P到其兩焦點(diǎn)F1,F(xiàn)2的距離之和為4,則實(shí)數(shù)a的值是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,且csinC-bsinB=(a-b)sinA.
(1)求角C;
(2)若c=5,a+b=7,求△A BC面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知定點(diǎn)A(2,0),圓x2+y2=1上有一個(gè)動(dòng)點(diǎn)Q,若AQ的中點(diǎn)為P.
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)設(shè)P的軌跡為曲線C,過點(diǎn)$B(\frac{1}{2},\frac{1}{2})$作曲線C的切線,求切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在等比數(shù)列{an)中,al=1,公比|q|≠1,若am=a2a5a10,則m=( 。
A.15B.16C.17D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知銳角α,β滿足$\frac{sinα}{cosβ}$+$\frac{sinβ}{cosα}$<2,設(shè)f(x)=logax(0<a<1),則下列判斷正確的是(  )
A.f(sinα)>f(cosβ)B.f(cosα)>f(sinβ)C.f(sinα)<f(sinβ)D.f(cosα)<f(cosβ)

查看答案和解析>>

同步練習(xí)冊(cè)答案