精英家教網 > 高中數學 > 題目詳情
5.已知實數x,y滿足$\left\{\begin{array}{l}{2y≤3x+6}\\{x+y≤0}\\{y≥-3}\end{array}\right.$,且z=x+2y的最小值為(  )
A.-4B.-10C.3D.5

分析 作出不等式對應的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可求z的最大值.

解答 解:作出不等式對應的平面區(qū)域,
由z=x+2y,得y=-$\frac{1}{2}x+\frac{z}{2}$,
平移直線y=-$\frac{1}{2}x+\frac{z}{2}$,由圖象可知當直線y=-$\frac{1}{2}x+\frac{z}{2}$經過點A,直線y=-$\frac{1}{2}x+\frac{z}{2}$的截距最小,此時z最。
由$\left\{\begin{array}{l}{y=-3}\\{2y=3x+6}\end{array}\right.$得$\left\{\begin{array}{l}{x=-4}\\{y=-3}\end{array}\right.$,即A(-4,-3),
此時z的最小值為z=-4-3×2=-10,
故選:B.

點評 本題主要考查線性規(guī)劃的應用,利用數形結合是解決線性規(guī)劃題目的常用方法.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

15.我市某大型企業(yè)2009年至2015年銷售額y(單位:億元)的數據如表所示:
年份2009201020112012201320142015
代號t1234567
銷售額y27313541495662
(1)畫出年份代號與銷售額的散點圖;

(2)求y關于t的線性回歸方程,相關數據保留兩位小數;
(3)利用所求回歸方程,說出2009年至2015年該大型企業(yè)銷售額的變化情況,并預測該企業(yè)2016年的銷售額,相關數據保留兩位小數.
附:回歸直線的斜率的最小二乘法估計公式:$\widehat$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t)^{2}}}$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}{{t}_{i}}^{2}-n{\overline{t}}^{2}}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.設函數f(x)=$\frac{sinx}{x}$,則f′(π)=( 。
A.0B.$\frac{1}{π}$C.-$\frac{1}{π}$D.-$\frac{1}{{π}^{2}}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.已知圓C:x2+y2-4x+2y+m=0與y軸交于A,B兩點,且∠ACB=90°(C為圓心),過點P(0,2)且斜率為k的直線與圓C相交于M,N兩點.
(Ⅰ)求實數m的值;
(Ⅱ)若|MN|≥4,求k的取值范圍;
(Ⅲ)若向量$\overrightarrow{OM}+\overrightarrow{ON}$與向量$\overrightarrow{OC}$共線(O為坐標原點),求k的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.已知Sn為數列{an}的前n項和,且an>0,an2+an=2Sn
(1)求數列{an}的通項公式;
(2)令bn=$\frac{{a}_{n}}{{a}_{n+1}}$,記Tn=b12b32…b2n-12,求證:Tn≥$\frac{1}{4n}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.設m,n為兩條不同的直線,α,β為兩個不重合的平面,給出下列四個判斷
①α∥β,m?α,n?β⇒則m∥n;
②α⊥β,m⊥α,n⊥β⇒m⊥n;
③正方形ABCD-A1B1C1D1中,M是C1C的中點,O是底面ABCD的中心,P是A1B1上的任意點,則直線BM與OP所成的角為定值$\frac{π}{2}$;
④空間四邊形PABC的各邊及對角線長度都相等,D、E分別是AB、BC的中點,則平面PDE⊥平面ABC.
其中正確的是②③.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.如圖所示,在半徑為7,圓心角為$\frac{π}{4}$的扇形鐵皮ADE上截去一個半徑為3的小扇形ABC,則剩下扇環(huán)的面積為5π.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.執(zhí)行如圖所示的程序框圖,若輸入S的值為-1,則輸出S的值為( 。
A.-1B.$\frac{1}{2}$C.2D.3

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.已知圓C:(x-3)2+(y-4)2=4,直線l1過定點A(1,0)
(1)若直線l1與圓相切,切點為B,求線段AB的長度;
(2)若l1與圓相交于P,Q兩點,線段PQ的中點為M,又l1與l2:x+2y+2=0的交點為N,判斷AM•AN是否為定值,若是,求出定值;若不是,請說明理由.

查看答案和解析>>

同步練習冊答案