5.點(diǎn)P(-3,1)在橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左準(zhǔn)線($x=-\frac{a^2}{c}$)上.過點(diǎn)P且方向?yàn)?\overrightarrow a$=(2,-5)的光線,經(jīng)直線y=-2反射后通過橢圓的左焦點(diǎn),則這個(gè)橢圓的離心率為(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{1}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{2}}}{12}$

分析 根據(jù)直線的方向向量,求得直線PQ的斜率,求得直線PQ的方程,求得與x=-2的交點(diǎn)坐標(biāo),求得反射直線QF1的方程,求得F1坐標(biāo),求得c的值,根據(jù)$\frac{{a}^{2}}{c}$=3,求得a的值,由橢圓的離心率公式即可求得e.

解答 解:如圖,過點(diǎn)P(-3,1)的方向 $\overrightarrow a$=(2,-5)
∴直線PQ的斜率為:kPQ=-$\frac{5}{2}$,
根據(jù)直線方程的點(diǎn)斜式得:lPQ的方程為y-1=-$\frac{5}{2}$(x+3),
與y=-2的交點(diǎn)為 (-$\frac{9}{5}$,-2)光線經(jīng)過直線y=-2反射后所在的直線方程為y+2=$\frac{5}{2}$(x+$\frac{9}{5}$),與x軸的交點(diǎn)(-1,0)即為橢圓的左焦點(diǎn)
得:c=1,$\frac{{a}^{2}}{c}$=3,則a=$\sqrt{3}$,
∴橢圓的離心率e=$\frac{c}{a}$=$\frac{\sqrt{3}}{3}$,
故答案選:A.

點(diǎn)評 本題主要考查了橢圓的簡單性質(zhì)、考查直線方程的求法,利用對稱性求解直線方程,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=3+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=2$\sqrt{3}$sinθ.
(Ⅰ)求圓C的直角做標(biāo)方程;
(Ⅱ)圓C的圓心為C,點(diǎn)P為直線l上的動點(diǎn),求|PC|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)全集U={-3,-2,-1,0,1,2,3},集合E={x|x2-3x+2=0,x∈R},F(xiàn)={x|cos$\frac{πx}{2}$=0,x∈R},則(∁UE)∩F=( 。
A.{-3,-1,0,3}B.{-3,-1,3}C.{-3,-1,1,3}D.{-3,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知圓錐的底面半徑為R,高為2R,在它的所有內(nèi)接圓柱中,側(cè)面積的最大值是( 。
A.$\frac{1}{4}π{R^2}$B.$\frac{1}{2}π{R^2}$C.πR2D.2πR2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=e2x+x2-ax-2.
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的極值;
(2)若g(x)=f(x)-x2+2,且g(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=-x3+ax2+bx(a,b∈R)的圖象如圖所示,它與x軸在原點(diǎn)處相切,且x軸與函數(shù)圖象所圍成區(qū)域(圖中陰影部分)的面積為$\frac{1}{12}$,若函數(shù)f(x)在$({\frac{-1-k}{2},\frac{-1+k}{2}})$上單調(diào)增,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=3,${a_n}=2{S_{n-1}}+{3^n}$(n∈N*且n≥2),則數(shù)列{an}的通項(xiàng)公式為an=(2n+1)•3n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某人經(jīng)營一個(gè)抽獎游戲,顧客花費(fèi)2元錢可購買一次游戲機(jī)會,每次游戲中,顧客從裝有1個(gè)黑球,3個(gè)紅球,6個(gè)白球的不透明袋子中依次不放回地摸出3個(gè)球(除顏色外其他都相同),根據(jù)摸出的球的顏色情況進(jìn)行兌獎,顧客獲得一等獎、二等獎、三等獎、四等獎時(shí)分別可領(lǐng)取獎金a元、10元、5元、1元,若經(jīng)營者將顧客摸出的3個(gè)球的顏色情況分成以下類別:A:1個(gè)黑球2個(gè)紅球;B:3個(gè)紅球;C:恰有1個(gè)白球;D:恰有2個(gè)白球;E:3個(gè)白球.且經(jīng)營者計(jì)劃將五種類別按照發(fā)生機(jī)會從小到大的順序分別對應(yīng)中一等獎、中二等獎、中三等獎、中四等獎、不中獎五個(gè)層次.
(1)請寫出一至四等獎分別對應(yīng)的類別(寫出字母即可);
(2)若經(jīng)營者不打算在這個(gè)游戲的經(jīng)營中虧本,求a的最大值;
(3)若a=50,當(dāng)顧客摸出的第一個(gè)球是紅球時(shí),求他領(lǐng)取的獎金的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.為研究“在n次獨(dú)立重復(fù)試驗(yàn)中,事件A恰好發(fā)生k次的概率的和”這個(gè)課題,我們可以分三步進(jìn)行研究:(I)取特殊事件進(jìn)行研究;(Ⅱ)觀察分析上述結(jié)果得到研究結(jié)論;(Ⅲ)試證明你得到的結(jié)論.現(xiàn)在,請你完成:
(1)拋擲硬幣4次,設(shè)P0,P1,P2,P3,P4分別表示正面向上次數(shù)為0次,1次,2次,3次,4次的概率,求P0,P1,P2,P3,P4(用分?jǐn)?shù)表示),并求P0+P1+P2+P3+P4;(2)拋擲一顆骰子三次,設(shè)P0,P1,P2,P3分別表示向上一面點(diǎn)數(shù)是3恰好出現(xiàn)0次,1次,2次,3次的概率,求P0,P1,P2,P3(用分?jǐn)?shù)表示),并求P0+P1+P2+P3;
(3)由(1)、(2)寫出結(jié)論,并對得到的結(jié)論給予解釋或給予證明.

查看答案和解析>>

同步練習(xí)冊答案