分析 (1)根據(jù)點(diǎn)到直線的距離即可判斷,
(2)作出集合A,B的圖象,利用(A∪B)∩C為兩個(gè)元素的集合,說明①直線ax+y=1和x+ay=1與圓x2+y2=1各有一個(gè)交點(diǎn)且不重合,②直線ax+y=1和x+ay=1重合,且與圓x2+y2=1有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)a即可;
(3)(A∪B)∩C為含三個(gè)元素的集合,a≠0,a≠1.直線ax+y=1和x+ay=1與圓x2+y2=1必須交于三個(gè)點(diǎn),即兩直線有一個(gè)交點(diǎn)在圓x2+y2=1上,且兩直線與圓還各有一個(gè)交點(diǎn),利用對稱性求出實(shí)數(shù)a即可.
解答 解:∵集合A={(x,y)|ax+y=1},B={(x,y)|x+ay=1},C={(x,y)|x2+y2=1},
∴集合A,B表示直線,C表示單位圓
(1)∵A∩C≠∅,
∴直線與圓有交點(diǎn),
∴d=1√a2+1≤1,
解得a為R,
(2)(A∪B)∩C含兩個(gè)元素
①直線ax+y=1和x+ay=1與圓x2+y2=1各有一個(gè)交點(diǎn)且不重合,則滿足條件,此時(shí)a=0,如圖(1)所示
②直線ax+y=1和x+ay=1重合,且與圓x2+y2=1有兩個(gè)不同的交點(diǎn),則滿足條件,此時(shí)a=1,如圖(2)所示
綜上,a=0或a=1時(shí),(A∪B)∩C為含兩個(gè)元素的集合
(2)(A∪B)∩C含三個(gè)元素
顯然a≠0,a≠1.
直線ax+y=1和x+ay=1與圓x2+y2=1必須交于三個(gè)點(diǎn),即兩直線有一個(gè)交點(diǎn)在圓x2+y2=1上,且兩直線與圓還各有一個(gè)交點(diǎn)
∵直線ax+y=1和x+ay=1關(guān)于直線y=x對稱
∴三個(gè)交點(diǎn)為(0,1),(1,0),(√22,√22)或(0,1),(1,0),(-√22,-√22)
如圖(3)(4)所示
此時(shí)a=-1±√2
點(diǎn)評 本題考查子集、并集、交集的轉(zhuǎn)換,考查數(shù)形結(jié)合,分類討論的思想,轉(zhuǎn)化思想的應(yīng)用,作出圖形,是解好本題的前提,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | -1 | C. | 1 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2120 | B. | -2 | C. | -2110 | D. | -215 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com