3.對某兩名高三學(xué)生在連續(xù)9次數(shù)學(xué)測試中的成績(單位:分)進行統(tǒng)計得到如下折線圖.下面關(guān)于這兩位同學(xué)的數(shù)學(xué)成績的分析中,正確的共有( 。﹤.

①甲同學(xué)的成績折線圖具有較好的對稱性,與正態(tài)曲線相近,故而平均成績?yōu)?30分;
②根據(jù)甲同學(xué)成績折線圖提供的數(shù)據(jù)進行統(tǒng)計,估計該同學(xué)平均成績在區(qū)間[110,120]內(nèi);
③乙同學(xué)的數(shù)學(xué)成績與考試次號具有比較明顯的線性相關(guān)性,且為正相關(guān);
④乙同學(xué)在這連續(xù)九次測驗中的最高分與最低分的差超過40分.
A.1B.2C.3D.4

分析 根據(jù)折線圖分別判斷①②③④的正誤即可.

解答 解:①甲同學(xué)的成績折線圖具有較好的對稱性,最高分是130分,故而平均成績小于130分,①錯誤;
②根據(jù)甲同學(xué)成績折線圖提供的數(shù)據(jù)進行統(tǒng)計,估計該同學(xué)平均成績在區(qū)間[110,120]內(nèi),②正確;
③乙同學(xué)的數(shù)學(xué)成績與考試次號具有比較明顯的線性相關(guān)性,且為正相關(guān),③正確;
④乙同學(xué)在這連續(xù)九次測驗中的最高分大于130分,最低分小于90分,差超過40分,故④正確;
故選:C.

點評 本題考查了頻率分布折線圖,考查數(shù)形結(jié)合,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,設(shè)圓內(nèi)接四邊形ABCD的邊BC為圓的直徑,其余三邊為a、b、c,求證:這個圓的直徑是方程x3-(a2+b2+c2)x-2abc=0的根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC中,角A,B,C所對的邊分別為a,b,c,設(shè)S為△ABC的面積,滿足S=$\frac{{\sqrt{3}}}{4}({a^2}+{c^2}-{b^2})$.
(Ⅰ)求角B的大小;
(Ⅱ)邊a,b,c成等比數(shù)列,求sinAsinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知實數(shù)1,t,4成等比數(shù)列,則圓錐曲線$\frac{x^2}{t}+{y^2}$=1的離心率為(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{2}}}{2}$或$\sqrt{3}$C.$\frac{1}{2}$或$\sqrt{3}$D.$\frac{{\sqrt{2}}}{2}$或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=xlnx,g(x)=x3+ax2-x+2.
(1)若函數(shù)g(x)的單調(diào)區(qū)間為(-$\frac{1}{3}$,1),求函數(shù)g(x)的解析式;
(2)在(1)的條件下,求函數(shù)g(x)過點P(1,1)的切線方程;
(3)若對任意的x∈(0,+∞),不等式2f(x)≤g′(x)+2(其中g(shù)′(x)是g(x)的導(dǎo)函數(shù))恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若曲線f(x)=$\frac{aelnx}{x}$在點(1,f(1))處的切線過點(0,-2e),則函數(shù)y=f(x)的極值為( 。
A.1B.2C.3D.e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.觀察如圖:

則第( 。┬械母鲾(shù)之和等于20112
A.2010B.2009C.1006D.1005

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,根據(jù)樣本的頻率分布直方圖,估計樣本的中位數(shù)是(  )
A.10B.12C.13D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合A={-4,2,-1,5},B={x|y=$\sqrt{x+2}$},則A∩B中元素的個數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案